Whittaker function
{{Short description|In mathematics, a solution to a modified form of the confluent hypergeometric equation}}
In mathematics, a Whittaker function is a special solution of Whittaker's equation, a modified form of the confluent hypergeometric equation introduced by {{harvs|txt|authorlink=E. T. Whittaker|last=Whittaker|year=1903}} to make the formulas involving the solutions more symmetric. More generally, {{harvs|txt|authorlink=Hervé Jacquet|last=Jacquet|year1=1966|year2=1967}} introduced Whittaker functions of reductive groups over local fields, where the functions studied by Whittaker are essentially the case where the local field is the real numbers and the group is SL2(R).
Whittaker's equation is
:
It has a regular singular point at 0 and an irregular singular point at ∞.
Two solutions are given by the Whittaker functions Mκ,μ(z), Wκ,μ(z), defined in terms of Kummer's confluent hypergeometric functions M and U by
:
:
The Whittaker function is the same as those with opposite values of {{mvar|μ}}, in other words considered as a function of {{mvar|μ}} at fixed {{mvar|κ}} and {{mvar|z}} it is even functions. When {{mvar|κ}} and {{mvar|z}} are real, the functions give real values for real and imaginary values of {{mvar|μ}}. These functions of {{mvar|μ}} play a role in so-called Kummer spaces.{{cite book|title=Hilbert spaces of entire functions|url=https://archive.org/details/hilbertspacesofe0000debr|url-access=registration|publisher=Prentice-Hall|author=Louis de Branges|author-link=Louis de Branges|asin=B0006BUXNM|date=1968}} Sections 55-57.
Whittaker functions appear as coefficients of certain representations of the group SL2(R), called Whittaker models.
References
{{Reflist}}
- {{AS ref |13|504|14|537}}
- {{citation|first=Harry|last=Bateman|title=Higher transcendental functions|volume=1|year=1953|publisher=McGraw-Hill|url=http://apps.nrbook.com/bateman/Vol1.pdf|access-date=2011-07-30|archive-date=2011-08-11|archive-url=https://web.archive.org/web/20110811153220/http://apps.nrbook.com/bateman/Vol1.pdf|url-status=dead}}.
- {{springer|id=W/w097850|title=Whittaker function|first=Yu.A. |last=Brychkov|first2=A.P.|last2= Prudnikov}}.
- {{dlmf|first=Adri B. Olde|last= Daalhuis|id=13}}
- {{Citation | last1=Jacquet | first1=Hervé | title=Une interprétation géométrique et une généralisation P-adique des fonctions de Whittaker en théorie des groupes semi-simples | mr=0200390 | year=1966 | journal=Comptes Rendus de l'Académie des Sciences, Série A et B | issn=0151-0509 | volume=262 | pages=A943–A945}}
- {{Citation | last1=Jacquet | first1=Hervé | title=Fonctions de Whittaker associées aux groupes de Chevalley | url=http://www.numdam.org/item?id=BSMF_1967__95__243_0 | mr=0271275 | year=1967 | journal=Bulletin de la Société Mathématique de France | issn=0037-9484 | volume=95 | pages=243–309| doi=10.24033/bsmf.1654 | doi-access=free }}
- {{springer|id=W/w097840|title=Whittaker equation|first=N.Kh. |last=Rozov}}.
- {{Citation | last1=Slater | first1=Lucy Joan | title=Confluent hypergeometric functions | publisher=Cambridge University Press | mr=0107026 | year=1960}}.
- {{Citation | last1=Whittaker | first1=Edmund T. | title=An expression of certain known functions as generalized hypergeometric functions | publisher=American Mathematical Society | location=Providence, R.I. | year=1903 | journal=Bulletin of the A.M.S. | volume=10 | issue=3 | pages=125–134| doi=10.1090/S0002-9904-1903-01077-5 | doi-access=free }}
Further reading
- {{Cite journal|last1=Hatamzadeh-Varmazyar|first1=Saeed|last2=Masouri|first2=Zahra|date=2012-11-01|title=A fast numerical method for analysis of one- and two-dimensional electromagnetic scattering using a set of cardinal functions|url=http://www.sciencedirect.com/science/article/pii/S0955799712001129|journal=Engineering Analysis with Boundary Elements|language=en|volume=36|issue=11|pages=1631–1639|doi=10.1016/j.enganabound.2012.04.014|issn=0955-7997|url-access=subscription}}
- {{Cite journal|last1=Gerasimov|first1=A. A.|last2=Lebedev|first2=Dmitrii R.|last3=Oblezin|first3=Sergei V.|date=2012|title=New integral representations of Whittaker functions for classical Lie groups|url=https://iopscience.iop.org/article/10.1070/RM2012v067n01ABEH004776/meta|journal=Russian Mathematical Surveys|language=en|volume=67|issue=1|pages=1–92|doi=10.1070/RM2012v067n01ABEH004776|arxiv=0705.2886|bibcode=2012RuMaS..67....1G|issn=0036-0279}}
- {{Cite journal|last1=Baudoin|first1=Fabrice|last2=O'Connell|first2=Neil|date=2011|title=Exponential functionals of brownian motion and class-one Whittaker functions|url=http://www.numdam.org/item/AIHPB_2011__47_4_1096_0/|journal= Annales de l'Institut Henri Poincaré, Probabilités et Statistiques|language=en|volume=47|issue=4|pages=1096–1120|doi=10.1214/10-AIHP401|bibcode=2011AIHPB..47.1096B|s2cid=113388|doi-access=free|arxiv=0809.2506}}
- {{Cite journal|last=McKee|first=Mark|date=April 2009|title=An Infinite Order Whittaker Function|journal=Canadian Journal of Mathematics|language=en|volume=61|issue=2|pages=373–381|doi=10.4153/CJM-2009-019-x|s2cid=55587239|issn=0008-414X|doi-access=free}}
- {{Cite journal|last1=Mathai|first1=A. M.|last2=Pederzoli|first2=Giorgio|date=1997-03-01|title=Some properties of matrix-variate Laplace transforms and matrix-variate Whittaker functions|journal=Linear Algebra and Its Applications|language=en|volume=253|issue=1|pages=209–226|doi=10.1016/0024-3795(95)00705-9|issn=0024-3795|doi-access=free}}
- {{Cite journal|last=Whittaker|first=J. M.|date=May 1927|title=On the Cardinal Function of Interpolation Theory|journal=Proceedings of the Edinburgh Mathematical Society|language=en|volume=1|issue=1|pages=41–46|doi=10.1017/S0013091500007318|issn=1464-3839|doi-access=free}}
- {{Cite journal|last=Cherednik|first=Ivan|date=2009|title=Whittaker Limits of Difference Spherical Functions|url=https://ieeexplore.ieee.org/document/8189397|journal=International Mathematics Research Notices|volume=2009|issue=20|pages=3793–3842|doi=10.1093/imrn/rnp065|arxiv=0807.2155|s2cid=6253357|issn=1687-0247}}
- {{Cite journal|last=Slater|first=L. J.|date=October 1954|title=Expansions of generalized Whittaker functions|url=https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/expansions-of-generalized-whittaker-functions/E011E597828132A26531306D6794C7C3|journal=Mathematical Proceedings of the Cambridge Philosophical Society|language=en|volume=50|issue=4|pages=628–631|doi=10.1017/S0305004100029765|bibcode=1954PCPS...50..628S|s2cid=122348447 |issn=1469-8064|url-access=subscription}}
- {{cite arXiv|last=Etingof|first=Pavel|date=1999-01-12|title=Whittaker functions on quantum groups and q-deformed Toda operators|eprint=math/9901053}}
- {{Cite journal|last=McNamara|first=Peter J.|date=2011-01-15|title=Metaplectic Whittaker functions and crystal bases|url=https://projecteuclid.org/euclid.dmj/1292509116|journal=Duke Mathematical Journal|language=EN|volume=156|issue=1|pages=1–31|doi=10.1215/00127094-2010-064|arxiv=0907.2675|s2cid=979197|issn=0012-7094}}
- {{Cite journal|last1=Mathai|first1=A. M.|last2=Pederzoli|first2=Giorgio|date=1998-01-15|title=A whittaker function of matrix argument|journal=Linear Algebra and Its Applications|language=en|volume=269|issue=1|pages=91–103|doi=10.1016/S0024-3795(97)00059-1|issn=0024-3795|doi-access=free}}
- {{Cite journal|last1=Frenkel|first1=E.|last2=Gaitsgory|first2=D.|last3=Kazhdan|first3=D.|last4=Vilonen|first4=K.|date=1998|title=Geometric realization of Whittaker functions and the Langlands conjecture|url=https://www.ams.org/jams/1998-11-02/S0894-0347-98-00260-4/|journal=Journal of the American Mathematical Society|language=en|volume=11|issue=2|pages=451–484|doi=10.1090/S0894-0347-98-00260-4|s2cid=13221400|issn=0894-0347|doi-access=free|arxiv=alg-geom/9703022}}