Wigner surmise

{{short description|Scientific hypothesis in mathematical physics}}

In mathematical physics, the Wigner surmise is a statement about the probability distribution of the spaces between points in the spectra of nuclei of heavy atoms, which have many degrees of freedom, or quantum systems with few degrees of freedom but chaotic classical dynamics. It was proposed by Eugene Wigner in probability theory.{{cite book |title=Random Matrices By Madan Lal Mehta |page=13 |isbn=9780080474113 |url=https://books.google.com/books?id=Kp3Nx03_gMwC&dq=wigner+surmise&pg=PA13|last1=Mehta |first1=Madan Lal |date=6 October 2004 |publisher=Elsevier }} The surmise was a result of Wigner's introduction of random matrices in the field of nuclear physics. The surmise consists of two postulates:

:: p_w(s) = \frac{\pi s}{2} e^{-\pi s^2/4}.

: Here, s = \frac{S}{D} where S is a particular spacing and D is the mean distance between neighboring intervals.{{cite book |title=Principles of Quantum Computation and Information |page=406 |isbn=9789812563453 |url=https://books.google.com/books?id=9cRl0dFaeGMC&dq=wigner+surmise&pg=PA406|last1=Benenti |first1=Giuliano |last2=Casati |first2=Giulio |last3=Strini |first3=Giuliano |year=2004 |publisher=World Scientific }}

  • In a mixed sequence (spin and parity are different), the probability density function can be obtained by randomly superimposing simple sequences.

The above result is exact for 2\times 2 real symmetric matrices M, with elements that are independent standard gaussian random variables, with joint distribution proportional to

::e^{-\frac{1}{2}{\rm Tr}(M^2)}=e^{-\frac{1}{2}{\rm Tr}\left(\begin{array}{cc}a & b \\b & c

\\\end{array}\right)^2}=e^{-\frac{1}{2}a^2-\frac{1}{2}c^2-b^2}.

In practice, it is a good approximation for the actual distribution for real symmetric matrices of any dimension. The corresponding result for complex hermitian matrices (which is also exact in the 2\times 2 case and a good approximation in general) with distribution proportional to e^{-\frac{1}{2}{\rm Tr}(MM^\dagger)}, is given by

:: p_w(s) = \frac{32 s^2}{\pi^2} e^{-4s^2/\pi}.

History

During the conference on Neutron Physics by Time-of-Flight, held at Gatlinburg, Tennessee, November 1 and 2, 1956, Wigner delivered a presentation on the theoretical arrangement of neighboring neutron resonances (with matching spin and parity) in heavy nuclei. In the presentation he gave the following guess:{{Cite book |last=Conference on Neutron Physics by Time-of-Flight |url=https://catalog.princeton.edu/catalog/SCSB-3197271 |title=Conference on Neutron Physics by Time-of-Flight, held at Gatlinburg, Tennessee, November 1 and 2, 1956; Oak Ridge National Laboratory Report ORNL-2309 |orig-date=1956 |publisher=Oak Ridge National Laboratory |year=1957 |pages=67 |language=English}}{{Cite book |last=Porter |first=Charles E. |url=https://books.google.com/books?id=b2VJAAAACAAJ |title=Statistical Theories of Spectra: Fluctuations |date=1965 |publisher=Elsevier Science & Technology Books |isbn=978-0-12-562356-8 |pages=208 |language=en}}{{Blockquote|text=Perhaps I am now too courageous when I try to guess the distribution of the distances between successive levels (of energies of heavy nuclei). Theoretically, the situation is quite simple if one attacks the problem in a simpleminded fashion. The question is simply what are the distances of the characteristic values of a symmetric matrix with random coefficients.|title=Results and theory of resonance absorption|author=Eugene Wigner|source=}}{{Citation |last1=Barrett |first1=Owen |title=From Quantum Systems to L-Functions: Pair Correlation Statistics and Beyond |date=2016 |url=http://dx.doi.org/10.1007/978-3-319-32162-2_2 |work=Open Problems in Mathematics |pages=123–171 |access-date=2023-05-13 |place=Cham |publisher=Springer International Publishing |isbn=978-3-319-32160-8 |last2=Firk |first2=Frank W. K. |last3=Miller |first3=Steven J. |last4=Turnage-Butterbaugh |first4=Caroline|doi=10.1007/978-3-319-32162-2_2 |s2cid=33509062 |arxiv=1505.07481 }}

See also

References

{{reflist}}

Category:Mathematical physics

Category:Nuclear physics

{{nuclear-stub}}

{{math-physics-stub}}