Williamson theorem

{{short description|Theorem about diagonalizing matrices}}

{{More footnotes needed|date=September 2024}}

In the context of linear algebra and symplectic geometry, the Williamson theorem concerns the diagonalization of positive definite matrices through symplectic matrices.{{Cite journal |last=Williamson |first=John |date=1936 |title=On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems |url=https://www.jstor.org/stable/2371062 |journal=American Journal of Mathematics |volume=58 |issue=1 |pages=141–163 |doi=10.2307/2371062 |jstor=2371062 |issn=0002-9327|url-access=subscription }}{{Cite journal |last=Nicacio |first=F. |date=2021-12-01 |title=Williamson theorem in classical, quantum, and statistical physics |journal=American Journal of Physics |volume=89 |issue=12 |pages=1139–1151 |doi=10.1119/10.0005944 |issn=0002-9505|arxiv=2106.11965 |bibcode=2021AmJPh..89.1139N }}{{Cite web |last=Yusofsani |first=Mohammad |date=25 November 2018 |title=Symplectic Geometry and Wiliamson's Theorem |url=https://math.arizona.edu/~rsims/ma541/Seye_lec.pdf |access-date=25 November 2018}}

More precisely, given a strictly positive-definite 2n\times 2n Hermitian real matrix M\in\mathbb{R}^{2n\times 2n}, the theorem ensures the existence of a real symplectic matrix S\in\mathbf{Sp}(2n,\mathbb{R}), and a diagonal positive real matrix D\in\mathbb{R}^{n\times n}, such that SMS^T = I_2\otimes D \equiv D\oplus D,where I_2 denotes the 2x2 identity matrix.

Proof

The derivation of the result hinges on a few basic observations:

  1. The real matrix M^{-1/2} (J\otimes I_n) M^{-1/2}, with J\equiv\begin{pmatrix}0&1\\-1&0\end{pmatrix}, is well-defined and skew-symmetric.
  2. For any invertible skew-symmetric real matrix A\in\mathbb{R}^{2n\times 2n}, there is O\in\mathbf{O}(2n) such that OAO^T= J\otimes \Lambda, where \Lambda a real positive-definite diagonal matrix containing the singular values of A.
  3. For any orthogonal O\in\mathbf O(2n), the matrix S= \left(I_2\otimes\sqrt D\right)O M^{-1/2} is such that SMS^T=J\otimes D.
  4. If O\in\mathbf O(2n) diagonalizes M^{-1/2} (J\otimes I_n) M^{-1/2}, meaning it satisfies OM^{-1/2} (J\otimes I_n) M^{-1/2}O^T=J\otimes\Lambda, then S= \left(I_2\otimes\sqrt D\right)O M^{-1/2} is such that S(J\otimes I_n)S^T=J\otimes (D\Lambda) .Therefore, taking D=\Lambda^{-1}, the matrix S is also a symplectic matrix, satisfying S(J\otimes I_n)S^T=J\otimes I_n.

References