Wolf summation

{{refimprove|date=August 2016}}

The Wolf summation is a method for computing the electrostatic interactions of systems (e.g. crystals). This method is generally more computationally efficient than the Ewald summation. It was proposed by Dieter Wolf.

{{cite journal|ref=ref1|first1=D|last1=Wolf|first2=P|last2=Keblinski|first3=S R|last3=Phillpot|first4=J|last4=Eggebrecht|title=Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r^-1 summation|journal=J. Chem. Phys.|volume=110|year=1999|issue=17|pages=8254|doi=10.1063/1.478738 |bibcode = 1999JChPh.110.8254W }}

References

{{Reflist}}

See also

  • [http://www.sklogwiki.org/SklogWiki/index.php/Wolf_method Wolf method] on [http://www.sklogwiki.org SklogWiki]

Category:Potential theory

Category:Computational physics

{{compu-physics-stub}}

{{atomic-physics-stub}}