Wright omega function

{{Short description|Mathematical function}}

{{Use American English|date = March 2019}}

Image:WrightOmega.png

In mathematics, the Wright omega function or Wright function,Not to be confused with the Fox–Wright function, also known as Wright function. denoted ω, is defined in terms of the Lambert W function as:

: \omega(z) = W_{\big \lceil \frac{\mathrm{Im}(z) - \pi}{2 \pi} \big \rceil}(e^z).

It is simpler to be defined by its inverse function

: z (\omega) = \ln(\omega)+\omega

Uses

One of the main applications of this function is in the resolution of the equation z = ln(z), as the only solution is given by z = e−ω(π i).

y = ω(z) is the unique solution, when z \neq x \pm i \pi for x ≤ −1, of the equation y + ln(y) = z. Except for those two values, the Wright omega function is continuous, even analytic.

Properties

The Wright omega function satisfies the relation W_k(z) = \omega(\ln(z) + 2 \pi i k).

It also satisfies the differential equation

: \frac{d\omega}{dz} = \frac{\omega}{1 + \omega}

wherever ω is analytic (as can be seen by performing separation of variables and recovering the equation \ln(\omega)+\omega = z, and as a consequence its integral can be expressed as:

:

\int \omega^n \, dz =

\begin{cases}

\frac{\omega^{n+1} -1 }{n+1} + \frac{\omega^n}{n} & \mbox{if } n \neq -1, \\

\ln(\omega) - \frac{1}{\omega} & \mbox{if } n = -1.

\end{cases}

Its Taylor series around the point a = \omega_a + \ln(\omega_a) takes the form :

: \omega(z) = \sum_{n=0}^{+\infty} \frac{q_n(\omega_a)}{(1+\omega_a)^{2n-1}}\frac{(z-a)^n}{n!}

where

: q_n(w) = \sum_{k=0}^{n-1} \bigg \langle \! \! \bigg \langle

\begin{matrix}

n+1 \\

k

\end{matrix}

\bigg \rangle \! \! \bigg \rangle (-1)^k w^{k+1}

in which

: \bigg \langle \! \! \bigg \langle

\begin{matrix}

n \\

k

\end{matrix}

\bigg \rangle \! \! \bigg \rangle

is a second-order Eulerian number.

Values

:

\begin{array}{lll}

\omega(0) &= W_0(1) &\approx 0.56714 \\

\omega(1) &= 1 & \\

\omega(-1 \pm i \pi) &= -1 & \\

\omega(-\frac{1}{3} + \ln \left ( \frac{1}{3} \right ) + i \pi ) &= -\frac{1}{3} & \\

\omega(-\frac{1}{3} + \ln \left ( \frac{1}{3} \right ) - i \pi ) &= W_{-1} \left ( -\frac{1}{3} e^{-\frac{1}{3}} \right ) &\approx -2.237147028 \\

\end{array}

Plots

Image:WrightOmegaRe.png|z=\Re\{\omega(x + iy)\}

Image:WrightOmegaIm.png|z=\Im\{\omega(x + iy)\}

Image:WrightOmegaAbs.png|z=|\omega(x + iy)|

Notes

{{reflist|group=note}}

References

  • [https://www.uwo.ca/apmaths/faculty/jeffrey/pdfs/wrightomega.pdf "The Wright ω function", Robert Corless and David Jeffrey]

Category:Special functions