ZW10
{{Infobox_gene}}
Centromere/kinetochore protein zw10 homolog is a protein that in humans is encoded by the ZW10 gene.{{cite journal | vauthors = Starr DA, Williams BC, Li Z, Etemad-Moghadam B, Dawe RK, Goldberg ML | title = Conservation of the centromere/kinetochore protein ZW10 | journal = J Cell Biol | volume = 138 | issue = 6 | pages = 1289–301 |date=Oct 1997 | pmid = 9298984 | pmc = 2132553 | doi =10.1083/jcb.138.6.1289 }}{{cite web | title = Entrez Gene: ZW10 ZW10, kinetochore associated, homolog (Drosophila)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=9183}} This gene encodes a protein that is one of many involved in mechanisms to ensure proper chromosome segregation during cell division. The encoded protein binds to centromeres during the prophase, metaphase, and early anaphase cell division stages and to kinetochore microtubules during metaphase.
Function
{{stack|
{{Infobox protein family
| Symbol = Zw10
| Name = Zw10
| image =
| width =
| caption =
| Pfam = PF06248
| Pfam_clan = CL0295
| InterPro = IPR009361
| SMART =
| PROSITE =
| MEROPS =
| SCOP =
| TCDB =
| OPM family =
| OPM protein =
| CAZy =
| CDD =
}}
}}
Zeste white 10 (ZW10) was initially identified as a mitotic checkpoint protein involved in chromosome segregation, and then implicated in targeting cytoplasmic dynein and dynactin to mitotic kinetochores, but it is also important in non-dividing cells. These include cytoplasmic dynein targeting to Golgi and other membranes, and SNARE-mediated ER-Golgi trafficking.{{cite journal | vauthors = Vallee RB, Varma D, Dujardin DL | title = ZW10 function in mitotic checkpoint control, dynein targeting and membrane trafficking: is dynein the unifying theme? | journal = Cell Cycle | volume = 5 | issue = 21 | pages = 2447–51 |date=November 2006 | pmid = 17102640 | pmc = 2794429 | doi = 10.4161/cc.5.21.3395}}{{cite journal | vauthors = Varma D, Dujardin DL, Stehman SA, Vallee RB | title = Role of the kinetochore/cell cycle checkpoint protein ZW10 in interphase cytoplasmic dynein function | journal = J. Cell Biol. | volume = 172 | issue = 5 | pages = 655–62 |date=February 2006 | pmid = 16505164 | pmc = 2063698 | doi = 10.1083/jcb.200510120 }} Dominant-negative ZW10, anti-ZW10 antibody, and ZW10 RNA interference (RNAi) cause Golgi dispersal. ZW10 RNAi also disperse endosomes and lysosomes.
Drosophila kinetochore components Rough deal (Rod) and Zw10 are required for the proper functioning of the metaphase checkpoint in flies.{{cite journal | vauthors = Basto R, Gomes R, Karess RE | title = Rough deal and Zw10 are required for the metaphase checkpoint in Drosophila | journal = Nat. Cell Biol. | volume = 2 | issue = 12 | pages = 939–43 |date=December 2000 | pmid = 11146659 | doi = 10.1038/35046592 | s2cid = 27007621 }} The eukaryotic spindle assembly checkpoint (SAC) monitors microtubule attachment to kinetochores and prevents anaphase onset until all kinetochores are aligned on the metaphase plate. It is an essential surveillance mechanism that ensures high fidelity chromosome segregation during mitosis. In higher eukaryotes, cytoplasmic dynein is involved in silencing the SAC by removing the checkpoint proteins Mad2 and the Rod-Zw10-Zwilch complex (RZZ) from aligned kinetochores.{{cite journal | vauthors = Griffis ER, Stuurman N, Vale RD | title = Spindly, a novel protein essential for silencing the spindle assembly checkpoint, recruits dynein to the kinetochore | journal = J. Cell Biol. | volume = 177 | issue = 6 | pages = 1005–15 |date=June 2007 | pmid = 17576797 | pmc = 2064361 | doi = 10.1083/jcb.200702062 }}{{cite journal | vauthors = Famulski JK, Vos L, Sun X, Chan G | title = Stable hZW10 kinetochore residency, mediated by hZwint-1 interaction, is essential for the mitotic checkpoint | journal = J. Cell Biol. | volume = 180 | issue = 3 | pages = 507–20 |date=February 2008 | pmid = 18268100 | pmc = 2234252 | doi = 10.1083/jcb.200708021 }}{{cite journal | vauthors = Yang Z, Tulu US, Wadsworth P, Rieder CL | title = Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint | journal = Curr. Biol. | volume = 17 | issue = 11 | pages = 973–80 |date=June 2007 | pmid = 17509882 | pmc = 2570756 | doi = 10.1016/j.cub.2007.04.056 | bibcode = 2007CBio...17..973Y }}
Interactions
ZW10 has been shown to interact with RINT1{{cite journal | vauthors = Hirose H, Arasaki K, Dohmae N, Takio K, Hatsuzawa K, Nagahama M, Tani K, Yamamoto A, Tohyama M, Tagaya M | title = Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi | journal = EMBO J. | volume = 23 | issue = 6 | pages = 1267–78 |date=March 2004 | pmid = 15029241 | pmc = 381410 | doi = 10.1038/sj.emboj.7600135 }} and dynamitin.{{cite journal|vauthors=Starr DA, Williams BC, Hays TS, Goldberg ML|title=ZW10 Helps Recruit Dynactin and Dynein to the Kinetochore|journal=Journal of Cell Biology|volume=142|issue=3|pages=763–774|doi=10.1083/jcb.142.3.763|year=1998|doi-access=free|pmid=9700164|pmc=2148168}}
{{Clear}}
References
{{reflist|35em}}
Further reading
{{refbegin | 35em}}
- {{cite journal | vauthors=Starr DA, Williams BC, Hays TS, Goldberg ML |title=ZW10 helps recruit dynactin and dynein to the kinetochore. |journal=J. Cell Biol. |volume=142 |issue= 3 |pages= 763–74 |year= 1998 |pmid= 9700164 |doi=10.1083/jcb.142.3.763 | pmc=2148168 }}
- {{cite journal |vauthors=Starr DA, Saffery R, Li Z, etal |title=HZwint-1, a novel human kinetochore component that interacts with HZW10. |journal=J. Cell Sci. |volume=113 |issue= 11|pages= 1939–50 |year= 2000 |doi=10.1242/jcs.113.11.1939 |pmid= 10806105 }}
- {{cite journal |vauthors=Chan GK, Jablonski SA, Starr DA, etal |title=Human Zw10 and ROD are mitotic checkpoint proteins that bind to kinetochores. |journal=Nat. Cell Biol. |volume=2 |issue= 12 |pages= 944–7 |year= 2001 |pmid= 11146660 |doi= 10.1038/35046598 |s2cid=22358201 }}
- {{cite journal |vauthors=Scaërou F, Starr DA, Piano F, etal |title=The ZW10 and Rough Deal checkpoint proteins function together in a large, evolutionarily conserved complex targeted to the kinetochore. |journal=J. Cell Sci. |volume=114 |issue= Pt 17 |pages= 3103–14 |year= 2001 |doi=10.1242/jcs.114.17.3103 |pmid= 11590237 }}
- {{cite journal |vauthors=Gevaert K, Goethals M, Martens L, etal |title=Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. |journal=Nat. Biotechnol. |volume=21 |issue= 5 |pages= 566–9 |year= 2004 |pmid= 12665801 |doi= 10.1038/nbt810 |s2cid=23783563 }}
- {{cite journal |vauthors=Hirose H, Arasaki K, Dohmae N, etal |title=Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi. |journal=EMBO J. |volume=23 |issue= 6 |pages= 1267–78 |year= 2005 |pmid= 15029241 |doi= 10.1038/sj.emboj.7600135 | pmc=381410 }}
- {{cite journal |vauthors=Musio A, Mariani T, Montagna C, etal |title=Recapitulation of the Roberts syndrome cellular phenotype by inhibition of INCENP, ZWINT-1 and ZW10 genes. |journal=Gene |volume=331 |pages= 33–40 |year= 2004 |pmid= 15094189 |doi= 10.1016/j.gene.2004.01.028 }}
- {{cite journal |vauthors=Nakajima K, Hirose H, Taniguchi M, etal |title=Involvement of BNIP1 in apoptosis and endoplasmic reticulum membrane fusion. |journal=EMBO J. |volume=23 |issue= 16 |pages= 3216–26 |year= 2005 |pmid= 15272311 |doi= 10.1038/sj.emboj.7600333 | pmc=514507 }}
- {{cite journal |vauthors=Wang H, Hu X, Ding X, etal |title=Human Zwint-1 specifies localization of Zeste White 10 to kinetochores and is essential for mitotic checkpoint signaling. |journal=J. Biol. Chem. |volume=279 |issue= 52 |pages= 54590–8 |year= 2005 |pmid= 15485811 |doi= 10.1074/jbc.M407588200 |doi-access= free }}
- {{cite journal |vauthors=Kops GJ, Kim Y, Weaver BA, etal |title=ZW10 links mitotic checkpoint signaling to the structural kinetochore. |journal=J. Cell Biol. |volume=169 |issue= 1 |pages= 49–60 |year= 2005 |pmid= 15824131 |doi= 10.1083/jcb.200411118 | pmc=1351127 }}
- {{cite journal | vauthors=Varma D, Dujardin DL, Stehman SA, Vallee RB |title=Role of the kinetochore/cell cycle checkpoint protein ZW10 in interphase cytoplasmic dynein function. |journal=J. Cell Biol. |volume=172 |issue= 5 |pages= 655–62 |year= 2006 |pmid= 16505164 |doi= 10.1083/jcb.200510120 | pmc=2063698 }}
- {{cite journal |vauthors=Nousiainen M, Silljé HH, Sauer G, etal |title=Phosphoproteome analysis of the human mitotic spindle. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=103 |issue= 14 |pages= 5391–6 |year= 2006 |pmid= 16565220 |doi= 10.1073/pnas.0507066103 | pmc=1459365 |bibcode=2006PNAS..103.5391N |doi-access=free }}
- {{cite journal | vauthors=Arasaki K, Taniguchi M, Tani K, Tagaya M |title=RINT-1 regulates the localization and entry of ZW10 to the syntaxin 18 complex. |journal=Mol. Biol. Cell |volume=17 |issue= 6 |pages= 2780–8 |year= 2006 |pmid= 16571679 |doi= 10.1091/mbc.E05-10-0973 | pmc=1474792 }}
- {{cite journal | vauthors=Lin YT, Chen Y, Wu G, Lee WH |title=Hec1 sequentially recruits Zwint-1 and ZW10 to kinetochores for faithful chromosome segregation and spindle checkpoint control. |journal=Oncogene |volume=25 |issue= 52 |pages= 6901–14 |year= 2006 |pmid= 16732327 |doi= 10.1038/sj.onc.1209687 |doi-access= free }}
- {{cite journal |vauthors=Ewing RM, Chu P, Elisma F, etal |title=Large-scale mapping of human protein-protein interactions by mass spectrometry. |journal=Mol. Syst. Biol. |volume=3 |issue= 1|pages= 89 |year= 2007 |pmid= 17353931 |doi= 10.1038/msb4100134 | pmc=1847948 }}
- {{cite journal | vauthors=Arasaki K, Uemura T, Tani K, Tagaya M |title=Correlation of Golgi localization of ZW10 and centrosomal accumulation of dynactin. |journal=Biochem. Biophys. Res. Commun. |volume=359 |issue= 3 |pages= 811–6 |year= 2007 |pmid= 17560939 |doi= 10.1016/j.bbrc.2007.05.188 }}
- {{cite journal |vauthors=Sun Y, Shestakova A, Hunt L, etal |title=Rab6 regulates both ZW10/RINT-1 and conserved oligomeric Golgi complex-dependent Golgi trafficking and homeostasis. |journal=Mol. Biol. Cell |volume=18 |issue= 10 |pages= 4129–42 |year= 2007 |pmid= 17699596 |doi= 10.1091/mbc.E07-01-0080 | pmc=1995728 }}
{{refend}}
{{gene-11-stub}}