Zariski's finiteness theorem

In algebra, Zariski's finiteness theorem gives a positive answer to Hilbert's 14th problem for the polynomial ring in two variables, as a special case.{{cite web|url=http://aix1.uottawa.ca/~ddaigle/articles/H14survey.pdf|title=HILBERT’S FOURTEENTH PROBLEM AND LOCALLY NILPOTENT DERIVATIONS|access-date=2023-08-25}} Precisely, it states:

:Given a normal domain A, finitely generated as an algebra over a field k, if L is a subfield of the field of fractions of A containing k such that the transcendence degree \operatorname{tr.deg}_k(L) \le 2, then the k-subalgebra L \cap A is finitely generated.

References

{{reflist}}

  • {{cite journal|last1=Zariski|first1=O.|title=Interprétations algébrico-géométriques du quatorzième problème de Hilbert|journal=Bull. Sci. Math. (2)|date=1954|volume=78|pages=155–168}}

Category:Hilbert's problems

Category:Invariant theory

Category:Commutative algebra

Category:Theorems in algebra

{{commutative-algebra-stub}}

{{math-hist-stub}}