Zernike polynomials#OSA/ANSI standard indices

{{Short description|Polynomial sequence}}

{{Use American English|date = March 2019}}

{{Use dmy dates|date=September 2020}}

File:Zernike polynomials with read-blue cmap.png

In mathematics, the Zernike polynomials are a sequence of polynomials that are orthogonal on the unit disk. Named after optical physicist Frits Zernike, laureate of the 1953 Nobel Prize in Physics and the inventor of phase-contrast microscopy, they play important roles in various optics branches such as beam optics and imaging.

{{cite journal

|last = Zernike

|first = F.

|year = 1934

|title = Beugungstheorie des Schneidenverfahrens und Seiner Verbesserten Form, der Phasenkontrastmethode

|journal= Physica

|volume=1

|number= 8

|doi=10.1016/S0031-8914(34)80259-5

|bibcode=1934Phy.....1..689Z

|pages = 689–704

}}

{{cite book

|author=Born, Max

|author-link=Max Born

|author2=Wolf, Emil

|author2-link=Emil Wolf

|name-list-style=amp

|title=Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light

|year=1999

|publisher=Cambridge University Press

|location=Cambridge, UK

|isbn=9780521642224

|pages=986

|edition=7th}} (see [https://books.google.com/books?id=nUHGpfNsGyUC&q=Zernike also at Google Books])

Definitions

There are even and odd Zernike polynomials. The even Zernike polynomials are defined as

:Z^{m}_n(\rho,\varphi) = R^m_n(\rho)\,\cos(m\,\varphi) \!

(even function over the azimuthal angle \varphi), and the odd Zernike polynomials are defined as

:Z^{-m}_n(\rho,\varphi) = R^m_n(\rho)\,\sin(m\,\varphi), \!

(odd function over the azimuthal angle \varphi) where m and n are nonnegative integers with n ≥ m ≥ 0 (m = 0 for spherical Zernike polynomials), \varphi is the azimuthal angle, ρ is the radial distance 0\le\rho\le 1, and R^m_n are the radial polynomials defined below. Zernike polynomials have the property of being limited to a range of −1 to +1, i.e. |Z^{m}_n(\rho,\varphi)| \le 1. The radial polynomials R^m_n are defined as

:R^m_n(\rho) = \sum_{k=0}^{\tfrac{n-m}{2}} \frac{(-1)^k\,(n-k)!}{k!\left (\tfrac{n+m}{2}-k \right )! \left (\tfrac{n-m}{2}-k \right)!} \;\rho^{n-2k}

for even nm, while it is 0 for odd nm. A special value is

:R_n^m(1)=1.

=Other representations=

Rewriting the ratios of factorials in the radial part as products of binomials shows that the coefficients are integer numbers:

:R_n^m(\rho)=\sum_{k=0}^{\tfrac{n-m}{2}}(-1)^k \binom{n-k}{k} \binom{n-2k}{\tfrac{n-m}{2}-k} \rho^{n-2k}.

A notation as terminating Gaussian hypergeometric functions is useful to reveal recurrences, to demonstrate that they are special cases of Jacobi polynomials, to write down the differential equations, etc.:

:\begin{align}

R_n^m(\rho) &= (-1)^{(n-m)/2} \rho^mP_{(n-m)/2}^{(m,0)}(1-2\rho^2) \\

&=

\binom{n}{\tfrac{n+m}{2}}\rho^n \ {}_2F_{1}\left(-\tfrac{n+m}{2},-\tfrac{n-m}{2};-n;\rho^{-2}\right) \\

&= (-1)^{\tfrac{n-m}{2}}\binom{\tfrac{n+m}{2}}{m}\rho^m \ {}_2F_{1}\left(1+\tfrac{n+m}{2},-\tfrac{n-m}{2};1+m;\rho^2\right)

\end{align}

for nm even.

The inverse relation expands \rho ^j for fixed m\le j into R_n^m(\rho)

:

\rho^j = \sum_{n\equiv m \pmod 2}^j h_{j,n,m}R_n^m(\rho)

with rational coefficients h_{j,n,m}{{cite journal

|first1=R. J.

|last1=Mathar

|doi=10.2298/SAJ0979107M

|title=Zernike Basis to Cartesian Transformations

|journal=Serbian Astronomical Journal

|volume=179

|year=2009

|bibcode=2009SerAJ.179..107M

|pages=107–120

|issue=179|arxiv = 0809.2368 |s2cid=115159231

}}

:

h_{j,n,m}=

\frac{n+1}{1+\frac{j+n}{2}}

\frac{\binom{(j-m)/2}{(n-m)/2}}{\binom{(j+n)/2}{(n-m)/2}}

for even j-m=0,2,4,\ldots.

The factor \rho^{n-2k} in the radial polynomial R_n^m(\rho) may be expanded in a Bernstein basis of b_{s,n/2}(\rho^2) for even n or \rho times a function of b_{s,(n-1)/2}(\rho^2) for odd n in the range \lfloor n/2\rfloor-k \le s \le \lfloor n/2\rfloor. The radial polynomial may therefore be expressed by a finite number of Bernstein Polynomials with rational coefficients:

:R_n^m(\rho) = \frac{1}{\binom{\lfloor n/2\rfloor}{\lfloor m/2\rfloor}} \rho^{n\mod 2} \sum_{s=\lfloor m/2\rfloor}^{\lfloor n/2\rfloor} (-1)^{\lfloor n/2\rfloor -s} \binom{s}{\lfloor m/2\rfloor}\binom{(n+m)/2}{s+\lceil m/2\rceil} b_{s,\lfloor n/2\rfloor}(\rho^2).

=Noll's sequential indices=

Applications often involve linear algebra, where an integral over a product of Zernike polynomials and some other factor builds a matrix elements.

To enumerate the rows and columns of these matrices by a single index, a conventional mapping of the two indices n and m to a single index j has been introduced by Noll.{{cite journal

|first1=R. J.

|last1=Noll

|title=Zernike polynomials and atmospheric turbulence

|journal=J. Opt. Soc. Am.

|volume=66

|year=1976

|url=https://ftp.bioeng.auckland.ac.nz/pub/pub/jtur044/references/fitting/NOLL1976.pdf

|doi=10.1364/JOSA.66.000207

|page=207

|bibcode=1976JOSA...66..207N

|issue=3}} The table of this association Z_n^m \rightarrow Z_j starts as follows {{OEIS|A176988}}.

j = \frac{n(n+1)}{2}+|m|+\left\{\begin{array}{ll}

0, & m>0 \land n \equiv \{0,1\} \pmod 4;\\

0, & m<0 \land n \equiv \{2,3\} \pmod 4;\\

1, & m \ge 0 \land n \equiv \{2,3\} \pmod 4;\\

1, & m \le 0 \land n \equiv \{0,1\} \pmod 4.

\end{array}\right.

class="wikitable"

!n,m

{{!!}} 0,0{{!!}}1,1{{!!}} 1,−1 {{!!}} 2,0{{!!}} 2,−2 {{!!}} 2,2{{!!}}3,−1{{!!}} 3,1 {{!!}} 3,−3 {{!!}} 3,3

------

! j

{{!}} 1{{!!}}2{{!!}} 3 {{!!}} 4 {{!!}} 5 {{!!}} 6 {{!!}} 7 {{!!}}8 {{!!}} 9{{!!}} 10

----

!n,m

{{!!}}4,0 {{!!}}4,2 {{!!}}4,−2{{!!}}4,4{{!!}}4,−4{{!!}}5,1{{!!}}5,−1{{!!}}5,3 {{!!}}5,−3{{!!}}5,5

----

! j

{{!!}}11 {{!!}}12 {{!!}}13 {{!!}}14{{!!}}15{{!!}}16{{!!}} 17 {{!!}} 18 {{!!}}19 {{!!}}20

The rule is the following.

  • The even Zernike polynomials Z with m>0 obtain even indices j.
  • The odd Z where m< 0odd indices j.
  • Within a given n, a lower \left\vert m \right\vert results in a lower j.

=OSA/ANSI standard indices=

OSA

{{cite journal

|first1=L. N.

|last1=Thibos

|first2=R. A.

|last2=Applegate

|first3=J. T.

|last3=Schwiegerling

|first4=R.

|last4=Webb

|title=Standards for reporting the optical aberrations of eyes

|journal=Journal of Refractive Surgery

|volume=18

|issue=5

|year=2002

|pages=S652-60

|doi=10.3928/1081-597X-20020901-30

|pmid=12361175

}} and ANSI single-index Zernike polynomials using:

:j =\frac{n(n+2)+l}{2}

class="wikitable"

!n,l

{{!!}} 0,0{{!!}}1,−1{{!!}} 1,1 {{!!}} 2,−2{{!!}} 2,0 {{!!}} 2,2{{!!}}3,−3{{!!}} 3,−1 {{!!}} 3,1 {{!!}} 3,3

------

! j

{{!}} 0 {{!!}} 1 {{!!}} 2 {{!!}} 3 {{!!}} 4 {{!!}} 5 {{!!}} 6 {{!!}} 7 {{!!}} 8 {{!!}} 9

----

!n,l

{{!!}}4,−4 {{!!}}4,−2 {{!!}}4,0{{!!}}4,2{{!!}}4,4{{!!}}5,−5{{!!}}5,−3{{!!}}5,−1 {{!!}}5,1{{!!}}5,3

----

! j

{{!!}} 10 {{!!}} 11 {{!!}} 12 {{!!}} 13 {{!!}} 14 {{!!}} 15 {{!!}} 16 {{!!}} 17 {{!!}} 18 {{!!}} 19

=Fringe/University of Arizona indices=

The Fringe indexing scheme is used in commercial optical design software and optical testing in, e.g., photolithography.Loomis, J., "A Computer Program for Analysis of Interferometric Data," Optical Interferograms, Reduction and Interpretation, ASTM STP 666, A. H. Guenther and D. H. Liebenberg, Eds., American Society for Testing and Materials, 1978, pp. 71–86.{{cite conference|conference=Proc SPIE |volume=4771|pages=276–286|year=2002|doi=10.1117/12.482169|title=Orthogonality of Zernike polynomials | first1=V. L. |last1=Genberg |first2=G. J. |last2=Michels|first3=K. B. |last3=Doyle|book-title=Optomechanical design and Engineering 2002}}

j = \left(1+\frac{n+|l|}{2}\right)^2-2|l|+ \left\lfloor\frac{1-\sgn l}{2}\right\rfloor

where

\sgn l

is the sign or signum function. The first 20 fringe numbers are listed below.

class="wikitable"

!n,l

{{!!}} 0,0{{!!}}1,1{{!!}} 1,−1 {{!!}} 2,0{{!!}} 2,2 {{!!}} 2,−2{{!!}}3,1{{!!}} 3,−1 {{!!}} 4,0 {{!!}} 3,3

------

! j

{{!}} 1{{!!}}2{{!!}} 3 {{!!}} 4 {{!!}} 5 {{!!}} 6 {{!!}} 7 {{!!}}8 {{!!}} 9{{!!}} 10

----

!n,l

{{!!}}3,−3 {{!!}}4,2 {{!!}}4,−2{{!!}}5,1{{!!}}5,−1{{!!}}6,0{{!!}}4,4{{!!}}4,−4 {{!!}}5,3{{!!}}5,−3

----

! j

{{!!}}11 {{!!}}12 {{!!}}13 {{!!}}14{{!!}}15{{!!}}16{{!!}} 17 {{!!}} 18 {{!!}}19 {{!!}}20

=Wyant indices=

James C. Wyant uses the "Fringe" indexing scheme except it starts at 0 instead of 1 (subtract 1).{{cite book |author=Eric P. Goodwin |author2=James C. Wyant |title=Field Guide to Interferometric Optical Testing |year=2006 |page=25 |isbn=0-8194-6510-0}} This method is commonly used including interferogram analysis software in Zygo interferometers and the open source software DFTFringe.

=Rodrigues Formula=

They satisfy the Rodrigues' formula

:Z_{n}^{m}(x)=\frac{x^{-m}}{\left( \frac{n-m}{2} \right) !}\left( \frac{d}{d\left( x^2 \right)} \right) ^{\frac{n-m}{2}}\left[ x^{n+m}\left( x^2-1 \right) ^{\frac{n-m}{2}} \right]

and can be related to the Jacobi polynomials as

:Z_{n}^{m}(x)=x^m\frac{P_{\frac{n-m}{2}}^{(0,m)}\left( 2x^2-1 \right)}{P_{\frac{n-m}{2}}^{(0,m)}(1)}.

Properties

=Orthogonality=

The orthogonality in the radial part reads{{cite journal|first1=V. | last1=Lakshminarayanan|first2=Andre |last2=Fleck|doi=10.1080/09500340.2011.554896|journal=J. Mod. Opt.|year=2011|bibcode=2011JMOp...58..545L|volume=58|issue=7|pages=545–561|title=Zernike polynomials: a guide| s2cid=120905947}}

:\int_0^1\sqrt{2n+2}R_n^m(\rho)\,\sqrt{2n'+2}R_{n'}^{m}(\rho)\,\rho d\rho = \delta_{n,n'}

or

\underset{0}{\overset{1}{\mathop \int }}\,R_{n}^{m}(\rho )R_{{{n}'}}^{m}(\rho )\rho d\rho =\frac{{{\delta }_{n,{n}'}}}{2n+2}.

Orthogonality in the angular part is represented by the elementary

:\int_0^{2\pi} \cos(m\varphi)\cos(m'\varphi)\,d\varphi=\epsilon_m\pi\delta_{m,m'},

:\int_0^{2\pi} \sin(m\varphi)\sin(m'\varphi)\,d\varphi=\pi\delta_{m,m'};\quad m\neq 0,

:\int_0^{2\pi} \cos(m\varphi)\sin(m'\varphi)\,d\varphi=0,

where \epsilon_m (sometimes called the Neumann factor because it frequently appears in conjunction with Bessel functions) is defined as 2 if m=0 and 1 if m\neq 0. The product of the angular and radial parts establishes the orthogonality of the Zernike functions with respect to both indices if integrated over the unit disk,

:\int Z_n^l(\rho,\varphi)Z_{n'}^{l'}(\rho,\varphi) \, d^2r =\frac{\epsilon_l\pi}{2n+2}\delta_{n,n'}\delta_{l,l'},

where d^2r=\rho\,d\rho\,d\varphi is the Jacobian of the circular coordinate system, and where n-l and n'-l' are both even.

=Zernike transform=

Any sufficiently smooth real-valued phase field over the unit disk G(\rho,\varphi) can be represented in terms of its Zernike coefficients (odd and even), just as periodic functions find an orthogonal representation with the Fourier series. We have

:G(\rho,\varphi) = \sum_{m,n}\left[ a_{m,n} Z^{m}_n(\rho,\varphi) + b_{m,n} Z^{-m}_n(\rho,\varphi) \right],

where the coefficients can be calculated using inner products. On the space of L^2 functions on the unit disk, there is an inner product defined by

:\langle F, G \rangle := \int F(\rho,\varphi)G(\rho,\varphi)\rho d\rho d\varphi.

The Zernike coefficients can then be expressed as follows:

:\begin{align}

a_{m,n} &= \frac{2n+2}{\epsilon_m\pi} \left \langle G(\rho,\varphi),Z^{m}_n(\rho,\varphi) \right \rangle, \\

b_{m,n} &= \frac{2n+2}{\epsilon_m\pi} \left \langle G(\rho,\varphi),Z^{-m}_n(\rho,\varphi) \right \rangle.

\end{align}

Alternatively, one can use the known values of phase function G on the circular grid to form a system of equations. The phase function is retrieved by the unknown-coefficient weighted product with (known values) of Zernike polynomial across the unit grid. Hence, coefficients can also be found by solving a linear system, for instance by matrix inversion. Fast algorithms to calculate the forward and inverse Zernike transform use symmetry properties of trigonometric functions, separability of radial and azimuthal parts of Zernike polynomials, and their rotational symmetries.

=Symmetries=

The reflections of trigonometric functions result that the parity with respect to reflection along the x axis is

:Z_n^{l}(\rho,\varphi)=Z_n^{l}(\rho,-\varphi) for l ≥ 0,

:Z_n^{l}(\rho,\varphi)=-Z_n^{l}(\rho,-\varphi) for l < 0.

The π shifts of trigonometric functions result that the parity with respect to point reflection at the center of coordinates is

:Z_n^l(\rho,\varphi) = (-1)^l Z_n^l(\rho,\varphi+\pi),

where (-1)^l could as well be written (-1)^n because n-l as even numbers are only cases to get non-vanishing Zernike polynomials. (If n is even then l is also even. If n is odd, then l is also odd.)

This property is sometimes used to categorize Zernike polynomials into even and odd polynomials in terms of their angular dependence. (it is also possible to add another category with l = 0 since it has a special property of no angular dependence.)

  • Angularly even Zernike polynomials: Zernike polynomials with even l so that Z_n^l(\rho,\varphi) = Z_n^l(\rho,\varphi+\pi).
  • Angularly odd Zernike polynomials: Zernike polynomials with odd l so that Z_n^l(\rho,\varphi) = - Z_n^l(\rho,\varphi+\pi).

The radial polynomials are also either even or odd, depending on order n or m:

:R_n^m(\rho)=(-1)^n R_n^m(-\rho)=(-1)^m R_n^m(-\rho).

These equalities are easily seen since R_n^m(\rho) with an odd (even) m contains only odd (even) powers to ρ (see examples of R_n^m(\rho) below).

The periodicity of the trigonometric functions results in invariance if rotated by multiples of 2\pi/l radian around the center:

:Z_n^l \left (\rho, \varphi+ \tfrac{2\pi k}{l} \right )=Z_n^l(\rho,\varphi),\qquad k= 0, \pm 1,\pm 2,\cdots.

=As eigenfunctions of a differential operator=

The Zernike polynomials are eigenfunctions of the Zernike differential operator, in modern formulation{{cite journal | year = 2017 | title = Quantum superintegrable Zernike system | journal = J. Math. Phys. | volume = 58 | issue = 7| doi = 10.1063/1.4990794 | last1 = Pogosyan | first1 = George S. | last2 = Salto-Alegre | first2 = Cristina | last3 = Wolf | first3 = Kurt Bernardo | last4 = Yakhno | first4 = Alexander | bibcode = 2017JMP....58g2101P | arxiv = 1702.08570 }}

:\begin{align}

L\left[f\right] = \nabla^2 f - ({\bf r}\cdot \nabla)^2 f - 2{\bf r}\cdot \nabla f

\end{align}

self-adjoint over the unit disk, with negative eigenvalues L[Z_n^m] = -n(n+2)Z_n^m. Other self-adjoint differential operators can be constructed for which the Zernike polynomials form a spectrum, for example \nabla \cdot (1-\rho^2 ) \nabla Z_n^m = \left( m^2 - n(n+2) \right) Z_n^m (relating to rough surface BRDFs{{Cite web|url=https://github.com/pec27/urdf | title = A Unitary BRDF for Surfaces with Gaussian Deviations}}), which differs from the above by a factor \partial_{\varphi \varphi}.

=Recurrence relations=

The Zernike polynomials satisfy the following recurrence relation which depends neither on the degree nor on the azimuthal order of the radial polynomials:{{cite journal | year = 2013 | title = Recursive formula to compute Zernike radial polynomials | journal = Opt. Lett. | volume = 38 | issue = 14| pages = 2487–2489 | doi = 10.1364/OL.38.002487 | last1 = Honarvar Shakibaei | first1 = Barmak| pmid = 23939089 | bibcode = 2013OptL...38.2487H }}

:\begin{align}

R_n^m(\rho)+R_{n-2}^m(\rho)=\rho\left[R_{n-1}^{\left|m-1\right|}(\rho)+R_{n-1}^{m+1}(\rho)\right] \text{ .}

\end{align}

From the definition of R_n^m it can be seen that R_m^m(\rho) = \rho^m and R_{m+2}^m(\rho) = ((m+2)\rho^{2} - (m+1))\rho^m. The following three-term recurrence relation

{{cite journal

|first1=E. C.

|last1=Kintner

|doi=10.1080/713819334

|title=On the mathematical properties of the Zernike Polynomials

|journal=Opt. Acta

|volume=23

|year=1976

|pages=679–680

|bibcode=1976AcOpt..23..679K

|issue=8

}} then allows to calculate all other R_n^m(\rho):

:

R_n^m(\rho) = \frac{2(n-1)(2n(n-2)\rho^2-m^2-n(n-2))R_{n-2}^m(\rho) - n(n+m-2)(n-m-2)R_{n-4}^m(\rho)}{(n+m)(n-m)(n-2)} \text{ .}

The above relation is especially useful since the derivative of R_n^m can be calculated from two radial Zernike polynomials of adjacent degree:

:

\frac{\operatorname{d}}{\operatorname{d}\! \rho} R_n^m(\rho) = \frac{(2 n m (\rho^2 - 1) + (n-m)(m + n(2\rho^2 - 1))) R_n^m(\rho) - (n+m)(n-m) R_{n-2}^m(\rho)}{2 n \rho (\rho^2 - 1)} \text{ .}

The differential equation of the Gaussian Hypergeometric Function is equivalent to

:

\rho^2(\rho^2-1) \frac{d^2}{d\rho^2} R_n^m(\rho) = [n(n+2)\rho^2-m^2]R_n^m(\rho)+\rho(1-3\rho^2)\frac{d}{d\rho} R_n^m(\rho).

Examples

= Radial polynomials =

The first few radial polynomials are:

: R^0_0(\rho) = 1 \,

: R^1_1(\rho) = \rho \,

: R^0_2(\rho) = 2\rho^2 - 1 \,

: R^2_2(\rho) = \rho^2 \,

: R^1_3(\rho) = 3\rho^3 - 2\rho \,

: R^3_3(\rho) = \rho^3 \,

: R^0_4(\rho) = 6\rho^4 - 6\rho^2 + 1 \,

: R^2_4(\rho) = 4\rho^4 - 3\rho^2 \,

: R^4_4(\rho) = \rho^4 \,

: R^1_5(\rho) = 10\rho^5 - 12\rho^3 + 3\rho \,

: R^3_5(\rho) = 5\rho^5 - 4\rho^3 \,

: R^5_5(\rho) = \rho^5 \,

: R^0_6(\rho) = 20\rho^6 - 30\rho^4 + 12\rho^2 - 1 \,

: R^2_6(\rho) = 15\rho^6 - 20\rho^4 + 6\rho^2 \,

: R^4_6(\rho) = 6\rho^6 - 5\rho^4 \,

: R^6_6(\rho) = \rho^6. \,

= Zernike polynomials =

The first few Zernike modes, at various indices, are shown below. They are normalized such that: \int_0^{2\pi} \int_0^1 Z^2\cdot\rho\,d\rho\,d\phi = \pi, which is equivalent to \operatorname{Var}(Z)_\text{unit circle} = 1 .

class="wikitable sortable"
Z_n^l|| OSA/ANSI
index
(j) || Noll
index
(j) || Wyant
index
(j) || Fringe/UA
index
(j)
Radial
degree
(n)
Azimuthal
degree
(l)
Z_jClassical name
Z_0^0{{0}}0{{0}}1{{0}}0{{0}}10{{0}}01Piston (see, Wigner semicircle distribution)
Z_1^{-1}{{0}}1{{0}}3{{0}}2{{0}}31−12 \rho \sin \phiTilt (Y-Tilt, vertical tilt)
Z_1^1{{0}}2{{0}}2{{0}}1{{0}}21+12 \rho \cos \phiTilt (X-Tilt, horizontal tilt)
Z_2^{-2}{{0}}3{{0}}5{{0}}5{{0}}62−2\sqrt{6} \rho^2 \sin 2 \phiOblique astigmatism
Z_2^0{{0}}4{{0}}4{{0}}3{{0}}42{{0}}0\sqrt{3} (2 \rho^2 - 1)Defocus (longitudinal position)
Z_2^2{{0}}5{{0}}6{{0}}4{{0}}52+2\sqrt{6} \rho^2 \cos 2 \phiVertical astigmatism
Z_3^{-3}{{0}}6{{0}}910113−3\sqrt{8} \rho^3 \sin 3 \phiVertical trefoil
Z_3^{-1}{{0}}7{{0}}7{{0}}7{{0}}83−1\sqrt{8} (3 \rho^3 - 2\rho) \sin \phiVertical coma
Z_3^1{{0}}8{{0}}8{{0}}6{{0}}73+1\sqrt{8} (3 \rho^3 - 2\rho) \cos \phiHorizontal coma
Z_3^3{{0}}910{{0}}9103+3\sqrt{8} \rho^3 \cos 3 \phiOblique trefoil
Z_4^{-4}101517184−4\sqrt{10} \rho^4 \sin 4 \phiOblique quadrafoil
Z_4^{-2}111312134−2\sqrt{10} (4 \rho^4 - 3\rho^2) \sin 2 \phiOblique secondary astigmatism
Z_4^01211{{0}}8{{0}}94{{0}}0\sqrt{5} (6 \rho^4 - 6 \rho^2 +1)Primary spherical
Z_4^2131211124+2\sqrt{10} (4 \rho^4 - 3\rho^2) \cos 2 \phiVertical secondary astigmatism
Z_4^4141416174+4\sqrt{10} \rho^4 \cos 4 \phiVertical quadrafoil

Applications

{{Further|Optical_aberration#Zernike_model_of_aberrations}}

File:ZernikeAiryImage.jpg

The functions are a basis defined over the circular support area, typically the pupil planes in classical optical imaging at visible and infrared wavelengths through systems of lenses and mirrors of finite diameter. Their advantages are the simple analytical properties inherited from the simplicity of the radial functions and the factorization in radial and azimuthal functions; this leads, for example, to closed-form expressions of the two-dimensional Fourier transform in terms of Bessel functions.{{cite journal|first1=E. |last1=Tatulli|doi=10.1364/JOSAA.30.000726 |pmid=23595334|year=2013|title=Transformation of Zernike coefficients: a Fourier-based method for scaled, translated, and rotated wavefront apertures

|bibcode=2013JOSAA..30..726T|journal=J. Opt. Soc. Am. A|volume=30|issue=4|pages=726–32|arxiv=1302.7106|s2cid=23491106}}

{{cite journal|first1=A. J. E. M.|last1=Janssen|title=New analytic results for the Zernike Circle Polynomials from a basic result in the Nijboer-Zernike diffraction theory|doi=10.2971/jeos.2011.11028|year=2011|journal=Journal of the European Optical Society: Rapid Publications| volume=6|pages=11028|bibcode=2011JEOS....6E1028J|doi-access=free}}

Their disadvantage, in particular if high n are involved, is the unequal distribution of nodal lines over the unit disk, which introduces ringing effects near the perimeter \rho\approx 1, which often leads attempts to define other orthogonal functions over the circular disk.{{cite journal|first1=Richard|last1=Barakat|title=Optimum balanced wave-front aberrations for radially symmetric amplitude distributions: Generalizations of Zernike polynomials|doi=10.1364/JOSA.70.000739|year=1980|journal=J. Opt. Soc. Am.|volume=70|issue=6|pages=739–742|bibcode=1980JOSA...70..739B}}{{cite arXiv|first1=A. J. E. M.|last1=Janssen|title=A generalization of the Zernike circle polynomials for forward and inverse problems in diffraction theory|eprint=1110.2369|year=2011|class=math-ph}}{{cite arXiv|first1=R. J.|last1=Mathar|title=Orthogonal basis function over the unit circle with the minimax property|eprint=1802.09518|year=2018|class=math.NA}}

In precision optical manufacturing, Zernike polynomials are used to characterize higher-order errors observed in interferometric analyses. In wavefront slope sensors like the Shack-Hartmann, Zernike coefficients of the wavefront can be obtained by fitting measured slopes with Zernike polynomial derivatives averaged over the sampling subapertures.{{Cite journal|last1=Akondi|first1=Vyas|last2=Dubra|first2=Alfredo|date=2020-06-22|title=Average gradient of Zernike polynomials over polygons|journal=Optics Express|language=EN|volume=28|issue=13|pages=18876–18886|doi=10.1364/OE.393223|pmid=32672177|pmc=7340383|bibcode=2020OExpr..2818876A|issn=1094-4087|doi-access=free}}

In optometry and ophthalmology, Zernike polynomials are used to describe wavefront aberrations of the cornea or lens from an ideal spherical shape, which result in refraction errors. They are also commonly used in adaptive optics, where they can be used to characterize atmospheric distortion. Obvious applications for this are IR or visual astronomy and satellite imagery.

Another application of the Zernike polynomials is found in the Extended Nijboer–Zernike theory of diffraction and aberrations.

Zernike polynomials are widely used as basis functions of image moments. Since Zernike polynomials are orthogonal to each other, Zernike moments can represent properties of an image with no redundancy or overlap of information between the moments. Although Zernike moments are significantly dependent on the scaling and the translation of the object in a region of interest (ROI), their magnitudes are independent of the rotation angle of the object.{{cite conference

| first = A.

| last = Tahmasbi

| year = 2010

| title = An Effective Breast Mass Diagnosis System using Zernike Moments

| conference = 17th Iranian Conf. on Biomedical Engineering (ICBME'2010)

| publisher = IEEE

| location = Isfahan, Iran

| pages = 1–4

| doi = 10.1109/ICBME.2010.5704941

}} Thus, they can be utilized to extract features from images that describe the shape characteristics of an object. For instance, Zernike moments are utilized as shape descriptors to classify benign and malignant breast masses

{{cite journal

|last1=Tahmasbi |first1=A.

|last2=Saki |first2=F.

|last3=Shokouhi |first3=S.B.

|year=2011

|title=Classification of Benign and Malignant Masses Based on Zernike Moments

|journal=Computers in Biology and Medicine

|volume=41 |issue=8

|pages=726–735

|doi=10.1016/j.compbiomed.2011.06.009

|pmid=21722886

}} or the surface of vibrating disks.{{cite journal|first1=W. P. |last1=Rdzanek|doi=10.1016/j.jsv.2018.07.035|title=Sound radiation of a vibrating elastically supported circular plate embedded into a flat screen revisited using the Zernike circle polynomials|year=2018|volume=434|pages=91–125|journal=J. Sound Vib.|bibcode=2018JSV...434...92R|s2cid=125512636}} Zernike Moments also have been used to quantify shape of osteosarcoma cancer cell lines in single cell level.{{cite journal|last1=Alizadeh|first1=Elaheh|last2=Lyons|first2=Samanthe M|last3=Castle|first3=Jordan M|last4=Prasad|first4=Ashok|title=Measuring systematic changes in invasive cancer cell shape using Zernike moments|journal=Integrative Biology|date=2016|volume=8|issue=11|pages=1183–1193|doi=10.1039/C6IB00100A|pmid=27735002}} Moreover, Zernike Moments have been used for early detection of Alzheimer's disease by extracting discriminative information from the MR images of Alzheimer's disease, Mild cognitive impairment, and Healthy groups.Gorji, H. T., and J. Haddadnia. "A novel method for early diagnosis of Alzheimer’s disease based on pseudo Zernike moment from structural MRI." Neuroscience 305 (2015): 361–371.

Higher dimensions

The concept translates to higher dimensions D if multinomials x_1^ix_2^j\cdots x_D^k in Cartesian coordinates are converted to hyperspherical coordinates, \rho^s, s\le D, multiplied by a product of Jacobi polynomials of the angular variables. In D=3 dimensions, the angular variables are spherical harmonics, for example. Linear combinations of the powers \rho^s define an orthogonal basis R_n^{(l)}(\rho) satisfying

:\int_0^1 \rho^{D-1}R_n^{(l)}(\rho)R_{n'}^{(l)}(\rho)d\rho = \delta_{n,n'}.

(Note that a factor \sqrt{2n+D} is absorbed in the definition of R here, whereas in D=2 the normalization is chosen slightly differently. This is largely a matter of taste, depending on whether one wishes to maintain an integer set of coefficients or prefers tighter formulas if the orthogonalization is involved.) The explicit representation is

:\begin{align}

R_n^{(l)}(\rho) &= \sqrt{2n+D}\sum_{s=0}^{\tfrac{n-l}{2}} (-1)^s {\tfrac{n-l}{2} \choose s}{n-s-1+\tfrac{D}{2} \choose \tfrac{n-l}{2}}\rho^{n-2s} \\

&=(-1)^{\tfrac{n-l}{2}} \sqrt{2n+D} \sum_{s=0}^{\tfrac{n-l}{2}} (-1)^s {\tfrac{n-l}{2} \choose s} {s-1+\tfrac{n+l+D}{2} \choose \tfrac{n-l}{2}} \rho^{2s+l} \\

&=(-1)^{\tfrac{n-l}{2}} \sqrt{2n+D} {\tfrac{n+l+D}{2}-1 \choose \tfrac{n-l}{2}} \rho^l \ {}_2F_1 \left ( -\tfrac{n-l}{2},\tfrac{n+l+D}{2}; l+\tfrac{D}{2}; \rho^2 \right )

\end{align}

for even n-l\ge 0, else identical to zero, with special case

R_n^{(n)}(\rho) = \sqrt{2n+D}\rho^n.

Its differential equation for the Gaussian Hypergeometric Function is equivalent to

\rho^2(\rho^2-1)\frac{d^2}{d\rho^2}R_n^{(l)}(\rho)

=

\left[n\rho^2(n+D)-l(D-2+l)\right]R_n^{(l)}(\rho)

+

\rho\left[D-1-(D+1)\rho^2\right]

\frac{d}{d\rho}R_n^{(l)}(\rho).

See also

References

{{Reflist}}

  • {{MathWorld|title=Zernike Polynomial|urlname=ZernikePolynomial}}
  • {{cite journal |first1=Torben B. | last1=Andersen | title= Efficient and robust recurrence relations for the Zernike circle polynomials and their derivatives in Cartesian coordinates

| doi=10.1364/OE.26.018878 | pmid=30114148 |year=2018 | journal = Opt. Express | volume = 26 | number=15 | pages=18878–18896| bibcode=2018OExpr..2618878A | doi-access=free }}

  • {{cite journal

|first1=A. B.

|last1=Bhatia

|first2=E.

|last2=Wolf

|doi=10.1088/0370-1301/65/11/112

|title=The Zernike circle polynomials occurring in diffraction theory

|journal=Proc. Phys. Soc. B

|volume=65

|year=1952

|pages=909–910

|bibcode=1952PPSB...65..909B

|issue=11

}}

  • {{cite journal

|first1=P. G.

|last1=Callahan

|first2=M.

|last2=De Graef

|title=Precipitate shape fitting and reconstruction by means of 3D Zernike functions

|doi=10.1088/0965-0393/20/1/015003

|year=2012

|journal= Modelling and Simulation in Materials Science and Engineering

|volume=20

|issue=1

|pages=015003

|bibcode=2012MSMSE..20a5003C

|s2cid=121700658

}}

  • {{cite journal

|first1=C. E.

|last1= Campbell

|doi=10.1364/JOSAA.20.000209

|title=Matrix method to find a new set of Zernike coefficients form an original set when the aperture radius is changed

|journal=J. Opt. Soc. Am. A

|volume=20

|year=2003

|bibcode=2003JOSAA..20..209C

|issue=2|pages= 209–217

|pmid= 12570287

}}

  • {{cite journal

|first1=C.

|last1=Cerjan

|title=The Zernike-Bessel representation and its application to Hankel transforms

|journal=J. Opt. Soc. Am. A

|volume=24

|year=2007

|doi=10.1364/JOSAA.24.001609

|bibcode=2007JOSAA..24.1609C

|issue=6|pages=1609–16

|pmid=17491628

|url=https://zenodo.org/record/894588

}}

  • {{cite journal

|first1=S. A.

|last1=Comastri

|first2=L. I.

|last2=Perez

|first3=G. D.

|last3=Perez

|first4=G.

|last4=Martin

|first5=K.

|last5=Bastida Cerjan

|doi=10.1088/1464-4258/9/3/001

|title=Zernike expansion coefficients: rescaling and decentering for different pupils and evaluation of corneal aberrations

|journal=J. Opt. Soc. Am. A

|volume=9

|year=2007

|pages=209–221

|bibcode=2007JOptA...9..209C

|issue=3

}}

  • {{cite journal

|first1=G.

|last1=Conforti

|title=Zernike aberration coefficients from Seidel and higher-order power-series coefficients

|journal=Opt. Lett.

|volume=8

|year=1983

|pages=407–408

|doi=10.1364/OL.8.000407

|bibcode=1983OptL....8..407C

|issue=7

|pmid=19718130

}}

  • {{cite journal

|first1=G-m.

|last1=Dai

|first2=V. N.

|last2=Mahajan

|title=Zernike annular polynomials and atmospheric turbulence

|journal=J. Opt. Soc. Am. A

|volume=24

|issue=1

|year=2007

|pages=139–155

|doi=10.1364/JOSAA.24.000139

|pmid=17164852

|bibcode=2007JOSAA..24..139D

}}

  • {{cite journal

|first1=G-m.

|last1=Dai

|title=Scaling Zernike expansion coefficients to smaller pupil sizes: a simpler formula

|journal=J. Opt. Soc. Am. A

|volume=23

|year=2006

|doi=10.1364/JOSAA.23.000539

|bibcode=2006JOSAA..23..539D

|issue=3

|pages=539–543

|pmid=16539048

}}

  • {{cite journal

|first1=J. A.

|last1=Díaz

|first2=J.

|last2=Fernández-Dorado

|first3=C.

|last3=Pizarro

|first4=J.

|last4=Arasa

|doi=10.1080/09500340802531224

|title=Zernike Coefficients for Concentric, Circular, Scaled Pupils: An Equivalent Expression

|journal=Journal of Modern Optics

|volume=56

|issue=1

|year=2009

|bibcode=2009JMOp...56..131D

|pages=149–155

|s2cid=122620015

}}

  • {{cite web

|first1=J. A.

|last1=Díaz

|first2=J.

|last2=Fernández-Dorado

|url=http://demonstrations.wolfram.com/ZernikeCoefficientsForConcentricCircularScaledPupils/

|title=Zernike Coefficients for Concentric, Circular, Scaled Pupils

}} from The Wolfram Demonstrations Project.

  • {{cite journal

|first1=Sajad

|last1=Farokhi

|first2=Siti Mariyam

|last2=Shamsuddin

|first3=Jan

|last3=Flusser

|first4=U.U.

|last4=Sheikh

|first5=Mohammad

|last5=Khansari

|first6=Kourosh

|last6=Jafari-Khouzani

|title=Rotation and noise invariant near-infrared face recognition by means of Zernike moments and spectral regression discriminant analysis

|journal=Journal of Electronic Imaging

|volume=22

|year=2013

|issue=1

|doi=10.1117/1.JEI.22.1.013030

|bibcode = 2013JEI....22a3030F

|pages=013030|s2cid=16758261

}}

  • {{cite journal

|first1=J. |last1=Gu

|first2=H. Z. |last2=Shu

|first3=C. | last3=Toumoulin

|first4=L. M. | last4=Luo

|title=A novel algorithm for fast computation of Zernike moments

|journal=Pattern Recognition

|year=2002

|volume=35

|number=12

|pages=2905–2911

|doi=10.1016/S0031-3203(01)00194-7

|bibcode=2002PatRe..35.2905G

}}

  • {{cite journal

|first1=J.

|last1=Herrmann

|title=Cross coupling and aliasing in modal wave-front estimation

|journal=J. Opt. Soc. Am.

|volume=71

|year=1981

|page=989

|doi=10.1364/JOSA.71.000989

|bibcode=1981JOSA...71..989H

|issue=8

}}

  • {{cite journal

|first1=P. H.

|last1=Hu

|first2=J.

|last2=Stone

|first3=T.

|last3=Stanley

|title=Application of Zernike polynomials to atmospheric propagation problems

|journal=J. Opt. Soc. Am. A

|volume=6

|year=1989

|page=1595

|doi=10.1364/JOSAA.6.001595

|bibcode=1989JOSAA...6.1595H

|issue=10

}}

  • {{cite journal

|first1=E. C.

|last1=Kintner

|doi=10.1080/713819334

|title=On the mathematical properties of the Zernike Polynomials

|journal=Opt. Acta

|volume=23

|year=1976

|pages=679–680

|bibcode=1976AcOpt..23..679K

|issue=8

}}

  • {{cite journal

|first1=G. N.

|last1=Lawrence

|first2=W. W.

|last2=Chow

|title=Wave-front tomography by Zernike Polynomial decomposition

|journal=Opt. Lett.

|volume=9

|issue=7

|year=1984

|pages=267–269

|doi=10.1364/OL.9.000267

|pmid=19721566

|bibcode=1984OptL....9..267L

}}

  • {{cite journal

|first1=Haiguang

|last1=Liu

|first2=Richard J.

|last2=Morris

|first3=A.

|last3=Hexemer

|first4=Scott

|last4=Grandison

|first5=Peter H.

|last5=Zwart

|title=Computation of small-angle scattering profiles with three-dimensional Zernike polynomials

|doi=10.1107/S010876731104788X

|pmid=22338662

|journal=Acta Crystallogr. A

|issue=2

|pages=278–285

|year=2012

|volume=68

}}

  • {{cite journal

|first1=L.

|last1=Lundström

|first2=P.

|last2=Unsbo

|doi=10.1364/JOSAA.24.000569

|title=Transformation of Zernike coefficients: scaled, translated and rotated wavefronts with circular and elliptical pupils

|journal=J. Opt. Soc. Am. A

|volume=24

|year=2007

|bibcode=2007JOSAA..24..569L

|issue=3

|pages=569–77

|pmid=17301846

}}

  • {{cite journal

|first1=V. N.

|last1=Mahajan

|title=Zernike annular polynomials for imaging systems with annular pupils

|journal=J. Opt. Soc. Am.

|volume=71

|year=1981

|page=75

|doi=10.1364/JOSA.71.000075

|bibcode=1981JOSA...71...75M

}}

  • {{cite journal

|first1=A.

|last1=Prata Jr

|first2=W. V. T.

|last2=Rusch

|title=Algorithm for computation of Zernike polynomials expansion coefficients

|journal=Appl. Opt.

|volume=28

|year=1989

|bibcode=1989ApOpt..28..749P

|doi=10.1364/AO.28.000749

|pmid=20548554

|issue=4

|pages=749–54

}}

  • {{cite journal

|first1=J.

|last1=Schwiegerling

|title=Scaling Zernike expansion coefficients to different pupil sizes

|journal=J. Opt. Soc. Am. A

|volume=19

|year=2002

|bibcode=2002JOSAA..19.1937S

|doi=10.1364/JOSAA.19.001937

|issue=10

|pages=1937–45

|pmid=12365613

}}

  • {{cite journal

|first1=C. J. R.

|last1=Sheppard

|author-link=Colin Sheppard

|first2=S.

|last2=Campbell

|first3=M. D.

|last3=Hirschhorn

|title=Zernike expansion of separable functions in Cartesian coordinates

|journal= Appl. Opt.

|volume=43

|year=2004

|doi=10.1364/AO.43.003963

|bibcode=2004ApOpt..43.3963S

|issue=20

|pages=3963–6

|pmid=15285082

}}

  • {{cite journal

|first1=H.

|last1=Shu

|first2=L.

|last2=Luo

|first3=G.

|last3=Han

|first4=J.-L.

|last4=Coatrieux

|title=General method to derive the relationship between two sets of Zernike coefficients corresponding to different aperture sizes

|journal=J. Opt. Soc. Am. A

|volume=23

|year=2006

|bibcode=2006JOSAA..23.1960S

|doi=10.1364/JOSAA.23.001960

|pmid=16835654

|pmc=1961626

|issue=8

|pages=1960–1966

}}

  • {{cite journal

|first1= W.

|last1=Swantner

|first2=W. W.

|last2=Chow

|title=Gram-Schmidt orthogonalization of Zernike polynomials for general aperture shapes

|journal=Appl. Opt.

|volume=33

|year=1994

|bibcode=1994ApOpt..33.1832S

|doi=10.1364/AO.33.001832

|pmid=20885515

|issue= 10

|pages=1832–7

}}

  • {{cite journal

|first1=W. J.

|last1=Tango

|doi=10.1007/BF00882606

|bibcode=1977ApPhy..13..327T

|title=The circle polynomials of Zernike and their application in optics

|journal=Appl. Phys. A

|volume=13

|year=1977

|pages=327–332

|issue=4

|s2cid=120469275

}}

  • {{cite journal

|first1=R. K.

|last1=Tyson

|title=Conversion of Zernike aberration coefficients to Seidel and higher-order power series aberration coefficients

|journal=Opt. Lett.

|volume=7

|year=1982

|doi=10.1364/OL.7.000262

|bibcode=1982OptL....7..262T

|issue=6

|pages=262–264

|pmid=19710893

}}

  • {{cite journal

|first1=J. Y.

|last1=Wang

|first2=D. E.

|last2=Silva

|title=Wave-front interpretation with Zernike Polynomials

|journal=Appl. Opt.

|volume=19

|year=1980

|doi=10.1364/AO.19.001510

|pmid=20221066

|bibcode=1980ApOpt..19.1510W

|issue=9

|pages=1510–8

}}

  • {{cite journal

|first1=R.

|last1=Barakat

|title=Optimum balanced wave-front aberrations for radially symmetric amplitude distributions: Generalizations of Zernike polynomials

|journal=J. Opt. Soc. Am.

|volume=70

|year=1980

|page=739

|doi=10.1364/JOSA.70.000739

|bibcode=1980JOSA...70..739B

|issue=6

}}

  • {{cite journal

|first1=T. A.

|last1=ten Brummelaar

|title=Modeling atmospheric wave aberrations and astronomical instrumentation using the polynomials of Zernike

|journal=Opt. Commun.

|volume=132

|year=1996

|issue=3–4

|pages=329–342

|bibcode=1996OptCo.132..329T

|doi=10.1016/0030-4018(96)00407-5

}}

  • {{Cite book

|first1=M.

|last1=Novotni

|first2=R.

|last2=Klein

|title=Proceedings of the eighth ACM symposium on Solid modeling and applications

|chapter=3D zernike descriptors for content based shape retrieval

|url=http://www.cg.cs.uni-bonn.de/docs/publications/2003/novotni-2003-3d.pdf

|pages=216–225

|doi=10.1145/781606.781639

|year=2003

|isbn=978-1581137064

|citeseerx=10.1.1.14.4970

|s2cid=10514681

}}

  • {{cite journal

|first1=M.

|last1=Novotni

|first2=R.

|last2=Klein

|url=http://www.cg.cs.uni-bonn.de/docs/publications/2004/novotni-2004-shape.pdf

|title=Shape retrieval using 3D Zernike descriptors

|journal=Computer-Aided Design

|volume=36

|issue=11

|pages=1047–1062

|doi=10.1016/j.cad.2004.01.005

|year=2004|citeseerx=10.1.1.71.8238

}}

  • {{cite book

|first1=Sajad

|last1=Farokhi

|first2=Siti Mariyam

|last2=Shamsuddin

|first3=U.U.

|last3=Sheikh

|first4=Jan

|last4=Flusser

|title=The 8th International Conference on Robotic, Vision, Signal Processing & Power Applications

|chapter=Near Infrared Face Recognition: A Comparison of Moment-Based Approaches

|series=Lecture Notes in Electrical Engineering

|chapter-url=https://www.researchgate.net/publication/261286249

|volume=291

|pages=129–135

|year=2014

|issue=1

|doi=10.1007/978-981-4585-42-2_15

|isbn=978-981-4585-41-5

}}

  • {{cite journal

|first1=Sajad

|last1=Farokhi

|first2=Siti Mariyam

|last2=Shamsuddin

|first3=Jan

|last3=Flusser

|first4=U.U.

|last4=Sheikh

|first5=Mohammad

|last5=Khansari

|first6=Kourosh

|last6=Jafari-Khouzani

|title=Near infrared face recognition by combining Zernike moments and undecimated discrete wavelet transform

|journal=Digital Signal Processing

|volume=31

|year=2014

|issue=1

|doi=10.1016/j.dsp.2014.04.008

|pages=13–27

}}