Zinc transporter 8
{{Short description|Protein found in humans}}
{{Infobox_gene}}
Zinc transporter 8 (ZNT8) is a protein that in humans is encoded by the SLC30A8 gene.{{cite web | title = Entrez Gene: SLC30A8 solute carrier family 30 (zinc transporter), member 8| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=169026}} ZNT8 is a zinc transporter related to insulin secretion in humans. In particular, ZNT8 is critical for the accumulation of zinc into beta cell secretory granules and the maintenance of stored insulin as tightly packaged hexamers. Certain alleles of the SLC30A8 gene may increase the risk for developing type 2 diabetes, but a loss-of-function mutation appears to greatly reduce the risk of diabetes.{{cite journal|last=Flannick|first=Jason|title=Loss-of-function mutations in SLC30A8 protect against type 2 diabetes|journal=Nature Genetics|year=2014|doi=10.1038/ng.2915|display-authors=etal|volume=46|issue=4|pages=357–363|pmid=24584071|pmc=4051628}}
Clinical significance
= Association with type 2 diabetes (T2D)=
Twelve rare variants in SLC30A8 have been identified through the sequencing or genotyping of approximately 150,000 individuals from 5 different ancestry groups. SLC30A8 contains a common variant (p.Trp325Arg), which is associated with T2D risk and levels of glucose and proinsulin.{{cite journal|last1=Dupis|first1=J.|title=New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.|journal=Nature Genetics|doi=10.1038/ng.520|pmid=20081858|volume=42|issue=2|date=Feb 2010|pages=105–16|display-authors=etal|pmc=3018764}}{{cite journal|last1=Strawbridge|first1=R.J.|title=Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.|journal=Diabetes|doi=10.2337/db11-0415|pmid=21873549|url=http://diabetes.diabetesjournals.org/content/60/10/2624|volume=60|issue=10|pmc=3178302|date=October 2011|pages=2624–34|display-authors=etal}}{{cite journal|last1=Morris|first1=A.P.|title=Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes.|journal=Nature Genetics|doi=10.1038/ng.2383|pmid=22885922|volume=44|issue=9|date=Sep 2012|pages=981–90|display-authors=etal|pmc=3442244}} Individuals carrying protein-truncating variants collectively had 65% reduced risk of T2D. Additionally, non-diabetic individuals from Iceland harboring a frameshift variant p. Lys34Serfs*50 demonstrated reduced glucose levels. Earlier functional studies of SLC30A8 suggested that reduced zinc transport increased T2D risk.{{cite journal|last1=Nicolson|first1=T.J.|title=Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes–associated variants.|journal=Diabetes|doi=10.2337/db09-0551|pmid=19542200|url=http://diabetes.diabetesjournals.org/content/58/9/2070|volume=58|issue=9|date=Sep 2009|pages=2070–83|display-authors=etal|pmc=2731533}}{{cite journal|last1=Rutter|first1=G.A.|title=Think zinc: new roles for zinc in the control of insulin secretion.|journal=Islets|doi=10.4161/isl.2.1.10259|pmid=21099294|volume=2|issue=1|pages=49–50|display-authors=etal|year=2010|doi-access=free}} Conversely, loss-of-function mutations in humans indicate that SLC30A8 haploinsufficiency protects against T2D. Therefore, ZnT8 inhibition can serve as a therapeutic strategy in preventing T2D.
See also
References
{{reflist}}
Further reading
{{refbegin | 2}}
- {{cite journal |vauthors=Chimienti F, Favier A, Seve M |title=ZnT-8, a pancreatic beta-cell-specific zinc transporter. |journal=Biometals |volume=18 |issue= 4 |pages= 313–7 |year= 2006 |pmid= 16158222 |doi= 10.1007/s10534-005-3687-9 |s2cid=25680038 }}
- {{cite journal |vauthors=Hartley JL, Temple GF, Brasch MA |title=DNA cloning using in vitro site-specific recombination. |journal=Genome Res. |volume=10 |issue= 11 |pages= 1788–95 |year= 2001 |pmid= 11076863 |doi=10.1101/gr.143000 | pmc=310948 }}
- {{cite journal |vauthors=Wiemann S, Weil B, Wellenreuther R, etal |title=Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs. |journal=Genome Res. |volume=11 |issue= 3 |pages= 422–35 |year= 2001 |pmid= 11230166 |doi= 10.1101/gr.GR1547R | pmc=311072 }}
- {{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |bibcode=2002PNAS...9916899M |doi-access=free }}
- {{cite journal |vauthors=Seve M, Chimienti F, Devergnas S, Favier A |title=In silico identification and expression of SLC30 family genes: an expressed sequence tag data mining strategy for the characterization of zinc transporters' tissue expression. |journal=BMC Genomics |volume=5 |pages= 32 |year= 2004 |pmid= 15154973 |doi= 10.1186/1471-2164-5-32 | pmc=428573 |issue=1 |doi-access=free }}
- {{cite journal |vauthors=Chimienti F, Devergnas S, Favier A, Seve M |title=Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. |journal=Diabetes |volume=53 |issue= 9 |pages= 2330–7 |year= 2004 |pmid= 15331542 |doi=10.2337/diabetes.53.9.2330 |doi-access=free }}
- {{cite journal |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 }}
- {{cite journal |vauthors=Wiemann S, Arlt D, Huber W, etal |title=From ORFeome to biology: a functional genomics pipeline. |journal=Genome Res. |volume=14 |issue= 10B |pages= 2136–44 |year= 2004 |pmid= 15489336 |doi= 10.1101/gr.2576704 | pmc=528930 }}
- {{cite journal |vauthors=Mehrle A, Rosenfelder H, Schupp I, etal |title=The LIFEdb database in 2006. |journal=Nucleic Acids Res. |volume=34 |issue= Database issue |pages= D415–8 |year= 2006 |pmid= 16381901 |doi= 10.1093/nar/gkj139 | pmc=1347501 }}
- {{cite journal |vauthors=Sladek R, Rocheleau G, Rung J, etal |title=A genome-wide association study identifies novel risk loci for type 2 diabetes. |journal=Nature |volume=445 |issue= 7130 |pages= 881–5 |year= 2007 |pmid= 17293876 |doi= 10.1038/nature05616 |bibcode=2007Natur.445..881S |s2cid=4302932 }}
- {{cite journal |vauthors=Wenzlau JM, Juhl K, Yu L, etal |title=The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=104 |issue= 43 |pages= 17040–5 |year= 2007 |pmid= 17942684 |doi= 10.1073/pnas.0705894104 | pmc=2040407 |bibcode=2007PNAS..10417040W |doi-access=free }}
{{refend}}
External links
- [http://news.bbc.co.uk/2/hi/health/6342855.stm Type 2 diabetes genes mapped out], BBC News article
Category:Solute carrier family
{{genetics-stub}}
{{membrane-protein-stub}}