Zonal spherical harmonics
In the mathematical study of rotational symmetry, the zonal spherical harmonics are special spherical harmonics that are invariant under the rotation through a particular fixed axis. The zonal spherical functions are a broad extension of the notion of zonal spherical harmonics to allow for a more general symmetry group.
On the two-dimensional sphere, the unique zonal spherical harmonic of degree ℓ invariant under rotations fixing the north pole is represented in spherical coordinates by
where {{math|Pℓ}} is the normalized Legendre polynomial of degree {{mvar|ℓ}}, . The generic zonal spherical harmonic of degree ℓ is denoted by , where x is a point on the sphere representing the fixed axis, and y is the variable of the function. This can be obtained by rotation of the basic zonal harmonic
In n-dimensional Euclidean space, zonal spherical harmonics are defined as follows. Let x be a point on the (n−1)-sphere. Define to be the dual representation of the linear functional
in the finite-dimensional Hilbert space of spherical harmonics of degree with respect to the uniform measure on the sphere . In other words, we have a reproducing kernel:
where is the uniform measure on .
Relationship with harmonic potentials
The zonal harmonics appear naturally as coefficients of the Poisson kernel for the unit ball in Rn: for x and y unit vectors,
where {{math|x,y ∈ Rn}} and the constants {{math|cn,k}} are given by
The coefficients of the Taylor series of the Newton kernel (with suitable normalization) are precisely the ultraspherical polynomials. Thus, the zonal spherical harmonics can be expressed as follows. If {{math|1=α = (n−2)/2}}, then
where
Properties
- The zonal spherical harmonics are rotationally invariant, meaning that
Z^{(\ell)}_{R\mathbf{x}}(R\mathbf{y}) = Z^{(\ell)}_{\mathbf{x}}(\mathbf{y}) for every orthogonal transformation R. Conversely, any function {{math|f(x,y)}} on {{math|Sn−1×Sn−1}} that is a spherical harmonic in y for each fixed x, and that satisfies this invariance property, is a constant multiple of the degree {{mvar|ℓ}} zonal harmonic. - If Y1, ..., Yd is an orthonormal basis of {{math|Hℓ}}, then
Z^{(\ell)}_{\mathbf{x}}(\mathbf{y}) = \sum_{k=1}^d Y_k(\mathbf{x})\overline{Y_k(\mathbf{y})}. - Evaluating at {{math|1=x = y}} gives
Z^{(\ell)}_{\mathbf{x}}(\mathbf{x}) = \omega_{n-1}^{-1} \dim \mathbf{H}_\ell.
References
- {{citation|last1=Stein|first1=Elias|authorlink1=Elias Stein|first2=Guido|last2=Weiss|authorlink2=Guido Weiss|title=Introduction to Fourier Analysis on Euclidean Spaces|publisher=Princeton University Press|year=1971|isbn=978-0-691-08078-9|location=Princeton, N.J.| url-access=registration|url=https://archive.org/details/introductiontofo0000stei}}.