acenaphthylene

{{distinguish|Acenaphthene}}

{{chembox

| Verifiedimages = changed

| Watchedfields = changed

| verifiedrevid = 477238237

| Name = Acenaphthylene

| ImageFileL1_Ref = {{chemboximage|correct|??}}

| ImageFileL1 = Acenaphthylene.svg

| ImageSizeL1 = 120px

| ImageAltL1 = Skeletal formula

| ImageFileR1 = Acenaphthylene-3D-spacefill.png

| ImageSizeR1 = 120px

| ImageAltR1 = Space-filling model

| PIN = Acenaphthylene{{cite book | title = Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book) | publisher = The Royal Society of Chemistry | date = 2014 | location = Cambridge | page = 210 | doi = 10.1039/9781849733069-00130 | isbn = 978-0-85404-182-4}}

| OtherNames = Cyclopenta[de]naphthalene
Acenaphthalene
Tricyclo[6.3.1.04,12]dodeca-1(12),2,4,6,8,10-hexaene{{citation needed|date=May 2019}}
Tricyclo[6.3.1.04,12]dodecahexaene{{citation needed|date=May 2019}}

|Section1={{Chembox Identifiers

| ChEBI_Ref = {{ebicite|correct|EBI}}

| ChEBI = 33081

| SMILES = c3cc1cccc2\C=C/c(c12)c3

| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}

| ChemSpiderID = 8807

| UNII_Ref = {{fdacite|correct|FDA}}

| UNII = 1Z25C36811

| InChI = 1/C12H8/c1-3-9-4-2-6-11-8-7-10(5-1)12(9)11/h1-8H

| InChIKey = HXGDTGSAIMULJN-UHFFFAOYAQ

| SMILES1 = c1cc2cccc3c2c(c1)C=C3

| StdInChI_Ref = {{stdinchicite|correct|chemspider}}

| StdInChI = 1S/C12H8/c1-3-9-4-2-6-11-8-7-10(5-1)12(9)11/h1-8H

| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}

| StdInChIKey = HXGDTGSAIMULJN-UHFFFAOYSA-N

| CASNo_Ref = {{cascite|correct|CAS}}

| CASNo = 208-96-8

| PubChem = 9161

| RTECS =

}}

|Section2={{Chembox Properties

| C=12 | H=8

| Appearance = Yellow crystals

| Density = 0.8987 g cm−3

| Solubility = Insoluble

| Solubility1 = very soluble

| Solvent1 = ethanol

| Solubility2 = very soluble

| Solvent2 = diethyl ether

| Solubility3 = very soluble

| Solvent3 = benzene

| Solubility4 = soluble

| Solvent4 = chloroform

| MeltingPtC = 91.8

| BoilingPtC = 280

}}

|Section3={{Chembox Structure

| CrystalStruct =

| Dipole =

}}

| Section4 = {{Chembox Thermochemistry

| Thermochemistry_ref = [https://pubchem.ncbi.nlm.nih.gov/compound/9161]{{cite book |author1=John Rumble |title=CRC Handbook of Chemistry and Physics |date=June 18, 2018 |publisher=CRC Press |isbn=978-1138561632 |pages=5–3|edition=99th |language=English}}

| HeatCapacity = 166.4 J mol−1 K−1

| Entropy =

| DeltaHform =

| DeltaGfree =

| DeltaHcombust =

| DeltaHfus = 186.7 kJ/mol

| DeltaHvap = 69 kJ/mol

| DeltaHsublim = 71.06 kJ/mol

| HHV =

| LHV =

}}

|Section7={{Chembox Hazards

| ExternalSDS =

| MainHazards =

| FlashPtC = 122

| GHSPictograms = {{GHS06}}{{GHS07}}

| GHSSignalWord = Danger

| HPhrases = {{H-phrases|302|310|315|319|330|335}}

| PPhrases = {{P-phrases|260|261|262|264|270|271|280|284|301+312|302+350|302+352|304+340|305+351+338|310|312|320|321|322|330|332+313|337+313|361|362|363|403+233|405|501}}

}}

|Section8={{Chembox Related

| OtherCompounds = acenaphthene

}}

}}

Acenaphthylene, a polycyclic aromatic hydrocarbon is an ortho- and peri-fused tricyclic hydrocarbon. The molecule resembles naphthalene with positions 1 and 8 connected by a -CH=CH- unit. It is a yellow solid. Unlike many polycyclic aromatic hydrocarbons, it has no fluorescence.

Occurrence

Acenaphthylene occurs as about 2% of coal tar. It is produced industrially by gas phase dehydrogenation of acenaphthene.{{Ullmann|doi=10.1002/14356007.a13_227|title=Hydrocarbons|year=2000|last1=Griesbaum|first1=Karl|last2=Behr|first2=Arno|last3=Biedenkapp|first3=Dieter|last4=Voges|first4=Heinz-Werner|last5=Garbe|first5=Dorothea|last6=Paetz|first6=Christian|last7=Collin|first7=Gerd|last8=Mayer|first8=Dieter|last9=Höke|first9=Hartmut|isbn=3527306730}}

Reactions

Hydrogenation gives the more saturated compound acenaphthene. Chemical reduction affords the radical anion sodium or potassium acenaphthalenide, which is used as a strong reductant (E = -2.26 V vs FC).{{cite journal |last1=Connelly |first1=Neil G. |last2=Geiger |first2=William E. |date=1996-01-01 |title=Chemical Redox Agents for Organometallic Chemistry |url=https://pubs.acs.org/doi/10.1021/cr940053x |journal=Chemical Reviews |language=en |volume=96 |issue=2 |pages=877–910 |doi=10.1021/cr940053x |pmid=11848774 |issn=0009-2665|url-access=subscription }}

It functions as a ligand for some organometallic compounds.{{cite journal |last1=Motoyama |first1=Yukihiro |last2=Itonaga |first2=Chikara |last3=Ishida |first3=Toshiki |last4=Takasaki |first4=Mikihiro |last5=Nagashima |first5=Hideo |year=2005 |title=Catalytic Reduction of Amides to Amines with Hydrosilanes Using a Triruthenium Carbonyl Cluster as the Catalyst |url=http://orgsyn.org/demo.aspx?prep=v82p0188 |journal=Organic Syntheses |volume=82 |pages=188 |doi=10.15227/orgsyn.082.0188|url-access=subscription }}

Uses

Polymerisation of acenaphthylene with acetylene in the presence of a Lewis acid catalyst gives electrically conductive polymers. Acenaphthylene possesses excellent properties as an antioxidant in cross-linked polyethylene and ethylene-propylene rubber. Thermal trimerization of acenaphthylene leads to decacyclene, which can be further processed to sulfur dyes.Ullmann, 4th ed., 21, 70

Toxicity

The no-observed-adverse-effect-level of acenaphthylene after repeated 28-day oral administration to both male and female rats was found to be 4 mg/kg/day.{{cite journal |last1=Tanabe |first1=S. |display-authors=et al |date=2017 |title=Toxicity of repeated 28-day oral administration of acenaphthylene in rats |journal=Fundamental Toxicological Sciences |volume=4 |issue=6 |pages=247–259 |doi=10.2131/fts.4.247 |doi-access=free }}

References