acene

{{short description|Class of chemical compounds}}

{{distinguish|text = the class of hydronitrogens known as "azenes"}}

File:Acenes general structure.svg

In organic chemistry, the acenes or polyacenes are a class of organic compounds and polycyclic aromatic hydrocarbons made up of benzene ({{chem2|C6H6}}) rings which have been linearly fused. They follow the general molecular formula {{chem2|C_{4n+2}H_{2n+4} }}.

The larger representatives have potential interest in optoelectronic applications and are actively researched in chemistry and electrical engineering. Pentacene has been incorporated into organic field-effect transistors, reaching charge carrier mobilities as high as 5 cm2/Vs.

The first 5 unsubstituted members are listed in the following table:

class="wikitable"

! Name

! Number of rings

! Molecular formula

! Structural formula

Anthracene

| 3

| {{chem2|C14H10}}

| 155px

Tetracene

| 4

| {{chem2|C18H12}}

| File:Tetracene 200.svg

Pentacene

| 5

| {{chem2|C22H14}}

| File:Pentacene 200.svg

Hexacene

| 6

| {{chem2|C26H16}}

| File:Hexacene 200.svg

Heptacene

| 7

| {{chem2|C30H18}}

| File:Heptacene 200.svg

Hexacene is not stable in air, and dimerises upon isolation. Heptacene (and larger acenes) is very reactive and has only been isolated in a matrix. However, bis(trialkylsilylethynylated) versions of heptacene have been isolated as crystalline solids.

Larger acenes

Due to their increased conjugation length the larger acenes are also studied. Theoretically, a number of reports are available on longer chains using density functional methods. They are also building blocks for nanotubes and graphene. Unsubstituted octacene (n=8) and nonacene (n=9) have been detected in matrix isolation. The first reports of stable nonacene derivatives claimed that due to the electronic effects of the thioaryl substituents the compound is not a diradical but a closed-shell compound with the lowest HOMO-LUMO gap reported for any acene, an observation in violation of Kasha's rule. Subsequent work by others on different derivatives included crystal structures, with no such violations. The on-surface synthesis and characterization of unsubstituted, parent nonacene (n=9) and decacene (n=10) have been reported. In 2020, scientists reported about the creation of dodecacene (n=12){{Cite journal|last1=Eisenhut|first1=Frank|last2=Kühne|first2=Tim|last3=García|first3=Fátima|last4=Fernández|first4=Saleta|last5=Guitián|first5=Enrique|last6=Pérez|first6=Dolores|last7=Trinquier|first7=Georges|last8=Cuniberti|first8=Gianaurelio|last9=Joachim|first9=Christian|last10=Peña|first10=Diego|last11=Moresco|first11=Francesca|date=2020-01-28|title=Dodecacene Generated on Surface: Reopening of the Energy Gap|url=https://pubs.acs.org/doi/10.1021/acsnano.9b08456|journal=ACS Nano|language=en|volume=14|issue=1|pages=1011–1017|doi=10.1021/acsnano.9b08456|pmid=31829618 |issn=1936-0851|arxiv=2004.02517|s2cid=209341741 }} for the first time. Four years later, in the beginning of 2024, Ruan et al. succeeded in synthesizing unsubstitued tridecacene (n=13) on a (111)-gold surface. The acene was characterized by STM- and STS-measurements. {{Cite journal |last=Ruan |first=Zilin |last2=Schramm |first2=Jakob |last3=Bauer |first3=John B. |last4=Naumann |first4=Tim |last5=Bettinger |first5=Holger F. |last6=Tonner-Zech |first6=Ralf |last7=Gottfried |first7=J. Michael |date=2024-01-12 |title=Synthesis of Tridecacene by Multistep Single-Molecule Manipulation |url=https://pubs.acs.org/doi/10.1021/jacs.3c09392 |journal=Journal of the American Chemical Society |language=en |doi=10.1021/jacs.3c09392 |issn=0002-7863|doi-access=free |pmc=10870776 }}

Related compounds

The acene series have the consecutive rings linked in a linear chain, but other chain linkages are possible. The phenacenes have a zig-zag structure and the helicenes have a helical structure.

File:Heptacene 200.svg|Heptacene

File:7-phenacene.svg|[7]Phenacene

File:M-heptahelicene.svg|M-heptahelicene

Benz[a]anthracene, an isomer of tetracene, has three rings connected in a line and one ring connected at an angle.

References

{{Reflist|colwidth=30em

|refs=

{{GoldBookRef|file=A00061|title=acenes}}

{{cite journal|doi=10.1002/anie.200604045|pmid=18046697|title=The Larger Acenes: Versatile Organic Semiconductors|year=2008|last1=Anthony|first1=John E.|journal=Angewandte Chemie International Edition|volume=47|issue=3|pages=452–83}}

{{cite journal|doi=10.1002/anie.200906002|pmid=20468014|title=Heptacene and Beyond: the Longest Characterized Acenes|year=2010|last1=Zade|first1=Sanjio S.|last2=Bendikov|first2=Michael|journal=Angewandte Chemie International Edition|volume=49|issue=24|pages=4012–5}}

{{Cite journal|last1=Wu|first1=Chun-Shian|last2=Chai|first2=Jeng-Da|date=2015-05-12|title=Electronic Properties of Zigzag Graphene Nanoribbons Studied by TAO-DFT|journal=Journal of Chemical Theory and Computation|volume=11|issue=5|pages=2003–2011|doi=10.1021/ct500999m|pmid=26894252 |issn=1549-9618|url=http://ntur.lib.ntu.edu.tw/bitstream/246246/270528/1/index.html |url-access=subscription}}

{{Cite journal|last1=Seenithurai|first1=Sonai|last2=Chai|first2=Jeng-Da|date=2016-09-09|title=Effect of Li Adsorption on the Electronic and Hydrogen Storage Properties of Acenes: A Dispersion-Corrected TAO-DFT Study|journal=Scientific Reports|language=en|volume=6|issue=1|pages=33081|doi=10.1038/srep33081|issn=2045-2322|pmc=5016802|pmid=27609626|arxiv=1606.03489|bibcode=2016NatSR...633081S}}

{{cite journal|doi=10.1002/anie.200906355|pmid=20432492|title=Photogeneration of Octacene and Nonacene|year=2010|last1=Tönshoff|first1=Christina|last2=Bettinger|first2=Holger F.|journal=Angewandte Chemie International Edition|volume=49|issue=24|pages=4125–8}}

{{cite journal|doi=10.1021/ja9095472|title=Design, Synthesis, and Characterization of a Persistent Nonacene Derivative|pmid=20055388|year=2010|last1=Kaur|first1=Irvinder|last2=Jazdzyk|first2=Mikael|last3=Stein|first3=Nathan N.|last4=Prusevich|first4=Polina|last5=Miller|first5=Glen P.|journal=Journal of the American Chemical Society|volume=132|issue=4|pages=1261–3}}

{{cite journal|doi=10.1002/anie.201102671|title=Synthesis and Structural Characterization of Crystalline Nonacenes|pmid=21717552|year=2011|last1=Purushothaman|first1=Balaji|last2=Bruzek|first2=Matthew|last3=Parkin|first3=Sean|last4=Miller|first4=Anne-Frances|last5=Anthony|first5=John|journal = Angew. Chem. Int. Ed. Engl.|volume=50|pages=7013–7017|issue=31}}

Electronic structure of higher acenes and polyacene: The perspective developed by theoretical analyses Holger F. Bettinger Pure Appl. Chem., Vol. 82, No. 4, pp. 905–915, 2010.

{{doi|10.1351/PAC-CON-09-10-29}}

Nonacene Generated by On-Surface Dehydrogenation Rafal Zuzak, Ruth Dorel, Mariusz Krawiec, Bartosz Such, Marek Kolmer, Marek Szymonski, Antonio M. Echavarren, Szymon Godlewski, ACS Nano, 2017, 11 (9), pp 9321–9329 {{doi|10.1021/acsnano.7b04728}}

Decacene: On-Surface Generation J. Krüger, F. García, F. Eisenhut, D. Skidin, J. M. Alonso, E. Guitián, D. Pérez, G. Cuniberti, F. Moresco, D. Peña, Angew. Chem. Int. Ed. 2017, 56, 11945. {{doi|10.1002/anie.201706156}}

}}

{{Hydrocarbons}}

{{PAHs}}

{{Authority control}}

Category:Conductive polymers

Category:Organic semiconductors