adjoint filter

In signal processing, the adjoint filter mask h^* of a filter mask h is reversed in time and the elements are complex conjugated.{{Cite book|url=https://books.google.com/books?id=PLcC2gmtv3kC|title=Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing|last=Broughton|first=S. Allen|last2=Bryan|first2=Kurt M.|date=2011-10-13|publisher=John Wiley & Sons|isbn=9781118211007|pages=141|language=en}}{{Cite book|url=https://books.google.com/books?id=VQa3CgAAQBAJ|title=Wavelets: An Elementary Treatment of Theory and Applications|last=Koornwinder|first=Tom H.|date=1993-06-24|publisher=World Scientific|isbn=9789814590976|pages=70|language=en}}{{Cite book|url=https://books.google.com/books?id=bcJJAAAAQBAJ|title=Excursions in Harmonic Analysis, Volume 2: The February Fourier Talks at the Norbert Wiener Center|last=Andrews|first=Travis D.|last2=Balan|first2=Radu|last3=Benedetto|first3=John J.|last4=Czaja|first4=Wojciech|last5=Okoudjou|first5=Kasso A.|date=2013-01-04|publisher=Springer Science & Business Media|isbn=9780817683795|pages=174|language=en}}

:(h^*)_k = \overline{h_{-k}}

Its name is derived from the fact that the convolution with the adjoint filter is the adjoint operator of the original filter, with respect to the Hilbert space \ell_2 of the sequences in which the inner product is the Euclidean norm.

:\langle h*x, y \rangle = \langle x, h^* * y \rangle

The autocorrelation of a signal x can be written as x^* * x.

Properties

  • {h^*}^* = h
  • (h*g)^* = h^* * g^*
  • (h\leftarrow k)^* = h^* \rightarrow k

References

{{Reflist}}

{{DEFAULTSORT:Adjoint Filter}}

Category:Digital signal processing

{{signal-processing-stub}}