advanced z-transform
In mathematics and signal processing, the advanced z-transform is an extension of the z-transform, to incorporate ideal delays that are not multiples of the sampling time. The advanced z-transform is widely applied, for example, to accurately model processing delays in digital control. It is also known as the modified z-transform.
It takes the form
:
where
- T is the sampling period
- m (the "delay parameter") is a fraction of the sampling period
Properties
If the delay parameter, m, is considered fixed then all the properties of the z-transform hold for the advanced z-transform.
=Linearity=
:
=Time shift=
:
=Damping=
:
=Time multiplication=
:
=Final value theorem=
:
Example
Consider the following example where :
:
F(z, m) & = \mathcal{Z} \left\{ \cos \left(\omega \left(k T + m \right) \right) \right\} \\
& = \mathcal{Z} \left\{ \cos (\omega k T) \cos (\omega m) - \sin (\omega k T) \sin (\omega m) \right\} \\
& = \cos(\omega m) \mathcal{Z} \left\{ \cos (\omega k T) \right\} - \sin (\omega m) \mathcal{Z} \left\{ \sin (\omega k T) \right\} \\
& = \cos(\omega m) \frac{z \left(z - \cos (\omega T) \right)}{z^2 - 2z \cos(\omega T) + 1} - \sin(\omega m) \frac{z \sin(\omega T)}{z^2 - 2z \cos(\omega T) + 1} \\
& = \frac{z^2 \cos(\omega m) - z \cos(\omega(T - m))}{z^2 - 2z \cos(\omega T) + 1}.
\end{align}
If then reduces to the transform
:
which is clearly just the z-transform of .
References
{{reflist}}
- {{cite book |author-link=Eliahu Ibraham Jury |first=Eliahu Ibraham |last=Jury |title=Theory and Application of the z-Transform Method |publisher=Krieger |date=1973 |isbn=0-88275-122-0 |oclc=836240}}
{{DSP}}