alternated order-4 hexagonal tiling

{{Short description|Uniform tiling of the hyperbolic plane}}

{{Uniform hyperbolic tiles db|Uniform hyperbolic tiling stat table|U443_0}}

In geometry, the alternated order-4 hexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of (3,4,4), h{6,4}, and hr{6,6}.

Uniform constructions

There are four uniform constructions, with some of lower ones which can be seen with two colors of triangles:

class=wikitable

! *443

! 3333

! *3232

! 3*22

align=center

| {{CDD|node_h1|6|node|4|node}} = {{CDD|branch_10ru|split2-44|node}}

| {{CDD|node_h|6|node_g|4sg|node_g}} = {{CDD|branch_hh|3a3b-cross|branch_hh}}

| {{CDD|node_h1|6|node|4|node_h0}} = {{CDD|node_h1|split1-66|nodes}} = {{CDD|nodes_11|3a3b-cross|nodes}}

| {{CDD|node_h|6|node_h0|4|node}} = {{CDD|branch_hh|2a2b-cross|nodes}}

align=center

|colspan=2|120px

|colspan=2|120px

colspan=2|(4,4,3) = h{6,4}

!colspan=2|hr{6,6} = h{6,4}{{frac|1|2}}

Related polyhedra and tiling

{{Order 6-4 tiling table}}

{{Order 6-6 tiling table}}

{{Order 4-4-3 tiling table}}

{{Order 3-2-3-2 tiling table}}

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, {{ISBN|978-1-56881-220-5}} (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • {{Cite book|title=The Beauty of Geometry: Twelve Essays|year=1999|publisher=Dover Publications|lccn=99035678|isbn=0-486-40919-8|chapter=Chapter 10: Regular honeycombs in hyperbolic space}}

See also

{{Commonscat|Uniform tiling 3-4-3-4-3-4-3-4}}