argonium

{{short description|Chemical compound}}

{{Chembox

| Watchedfields =

| Name =

| ImageFile =

| ImageFile_Ref =

| ImageSize =

| ImageName =

| ImageFile2 = Argonium-3D-vdW.png

| ImageFile2_Ref =

| ImageSize2 =

| ImageName2 =

| SystematicName =

| OtherNames = Hydridoargon(1+)
argon hydride cationNIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101. Release 19, April 2018, Editor: Russell D. Johnson III. http://cccbdb.nist.gov/
protonated argon{{cite journal |arxiv=1607.00375|doi=10.3847/0004-637X/826/2/183|bibcode=2016ApJ...826..183N|title=The Chemistry of Interstellar Argonium and Other Probes of the Molecular Fraction in Diffuse Clouds|year=2016|last1=Neufeld|first1=David A.|last2=Wolfire|first2=Mark G.|journal=The Astrophysical Journal|volume=826|issue=2|pages=183|s2cid=118493563 |doi-access=free }}

| IUPACName = Argonium ion

| Section1 = {{Chembox Identifiers

| CASNo = 12254-68-1

| CASNo_Ref = {{cascite|correct|CAS}}

| ChemSpiderID =

| ChemSpiderID_Ref =

| ChEBI =

| ChEBI2 =

| ChEBI2_Comment =

| Gmelin =

| SMILES = [ArH+]

| StdInChI = 1S/ArH/h1H/q+1

| StdInChI_Ref = {{stdinchicite|correct|NIST}}

| StdInChIKey = TVQSUVFYDVJWLI-UHFFFAOYSA-N

| StdInChIKey_Ref = {{stdinchicite|correct|NIST}}

}}

| Section2 = {{Chembox Properties

| Formula = {{Chem|ArH|+}}

| Ar=1|H=1

| ConjugateBase = Argon

| MolarMass =

}}

|Section8={{Chembox Related

| OtherCompounds = Helium hydride ion, Neonium, Kryptonium, Xenonium

}}

}}

Argonium (also called the argon hydride cation, the hydridoargon(1+) ion, or protonated argon; chemical formula ArH+) is a cation combining a proton and an argon atom. It can be made in an electric discharge, and was the first noble gas molecular ion to be found in interstellar space.{{cite news|last1=Quenqua|first1=Douglas|title=Noble Molecules Found in Space|url=https://www.nytimes.com/2013/12/17/science/space/noble-molecules-found-in-space.html?_r=0|access-date=26 September 2016|work=The New York Times|date=13 December 2013}}

Properties

Argonium is isoelectronic with hydrogen chloride. Its dipole moment is 2.18 D for the ground state. The binding energy is 369 kJ mol−1 (3.9 eV). This is smaller than that of trihydrogen cation and many other protonated species, but more than that of Dihydrogen cation.

Rotationless radiative lifetimes of different vibrational states vary with isotope and become shorter for the more rapid high-energy vibrations:

:

class="wikitable"

|+Lifetimes (ms){{cite journal |title=Molecular Constants for the 1Σ+ Ground State of the ArH+ Ion|author=Pavel Rosmus|journal=Theoretica Chimica Acta |volume=51|issue=4|pages=359–363|date=1979|doi=10.1007/BF00548944|s2cid=98475430}}

!v !!ArH+ !!ArD+

12.289.09
21.204.71
30.853.27
40.642.55
50.462.11

The force constant in the bond is calculated at 3.88 mdyne/Å2.{{cite journal|last1=Fortenberry|first1=Ryan C.|title=Quantum astrochemical spectroscopy|journal=International Journal of Quantum Chemistry|volume=117|issue=2|pages=81–91|date=June 2016|doi=10.1002/qua.25180|doi-access=free}}

Reactions

  • ArH+ + H2 → Ar + {{chem|H|3|+}}
  • ArH+ + C → Ar + CH+
  • ArH+ + N → Ar + NH+
  • ArH+ + O → Ar + OH+
  • ArH+ + CO → Ar + COH+

But the reverse reaction happens:

  • Ar + {{chem|H|2|+}} → ArH+ + H.
  • Ar + {{chem|H|3|+}} → *ArH+ + H2

Ar+ + H2 has a cross section of 10−18 m2 for low energy. It has a steep drop off for energies over 100 eV{{cite journal|title=Collisions of H+, {{chem|H|2|+}}, {{chem|H|3|+}}, ArH+, H, H, and H2 with Ar and of Ar+ and ArH+ with H2 for Energies from 0.1 eV to 10 keV

|first=A. V. |last=Phelps |journal=J. Phys. Chem. Ref. Data |volume=21 |issue=4 |date=1992|doi=10.1063/1.555917 }}

Ar + {{chem|H|2|+}} has a cross sectional area of {{val|6e-19|u=m2}} for low energy {{chem|H|2|+}}, but when the energy exceeds 10 eV yield reduces, and more Ar+ and H2 is produced instead.

Ar + {{chem|H|3|+}} has a maximum yield of ArH+ for energies between 0.75 and 1 eV with a cross section of {{val|5e-20|u=m2}}. 0.6 eV is needed to make the reaction proceed forward. Over 4 eV more Ar+ and H starts to appear.

Argonium is also produced from Ar+ ions produced by cosmic rays and X-rays from neutral argon.

  • Ar+ + H2 → *ArH+ + H 1.49 eV

When ArH+ encounters an electron, dissociative recombination can occur, but it is extremely slow for lower energy electrons, allowing ArH+ to survive for a much longer time than many other similar protonated cations.

  • ArH+ + e → Ar + H

Because ionisation potential of argon atoms is lower than that of the hydrogen molecule (in contrast to that of helium or neon), the argon ion reacts with molecular hydrogen, but for helium and neon ions, they will strip an electron from a hydrogen molecule.

  • Ar+ + H2 → ArH+ + H
  • Ne+ + H2 → Ne + H+ + H (dissociative charge transfer)
  • He+ + H2 → He + H+ + H

Spectrum

Artificial ArH+ made from earthly argon contains mostly the isotope 40Ar rather than the cosmically abundant 36Ar. Artificially it is made by an electric discharge through an argon–hydrogen mixture. Brault and Davis were the first to detect the molecule using infrared spectroscopy to observe vibration–rotation bands.

class="wikitable"

|colspan=2|Far infrared spectrum of 40Ar1H+{{cite journal|last1=Brown|first1=John M.|last2=Jennings|first2=D.A.|last3=Vanek|first3=M.|last4=Zink|first4=L.R.|last5=Evenson|first5=K.M.|title=The pure rotational spectrum of ArH+|journal=Journal of Molecular Spectroscopy|date=April 1988|volume=128|issue=2|pages=587–589|doi=10.1016/0022-2852(88)90173-7|bibcode=1988JMoSp.128..587B|url=https://zenodo.org/record/1253940}}

|36Ar

|38Ar

Transition

!colspan=3|observed frequency

J

!colspan=3|GHz

1←0

|615.8584

|617.525

|615.85815

2←1

|1231.2712

|1234.602

3←2

|1845.7937

4←3

|2458.9819

5←4

|3080.3921

6←5

|3679.5835

7←6

|4286.1150

21←20

|12258.483

22←21

|12774.366

23←22

|13281.119

The UV spectrum has two absorption points resulting in the ion breaking up. The 11.2 eV conversion to the B1Π state has a low dipole and so does not absorb much. A 15.8 eV to a repulsive A1Σ+ state is at a shorter wavelength than the Lyman limit, and so there are very few photons around to do this in space.

Natural occurrence

ArH+ occurs in interstellar diffuse atomic hydrogen gas. For argonium to form, the fraction of molecular hydrogen H2 must be in the range 0.0001 to 0.001. Different molecular ions form in correlation with different concentrations of H2. Argonium is detected by its absorption lines at 617.525 GHz (J = 1→0), and 1234.602 GHz (J = 2→1). These lines are due to the isotopolog 36Ar1H+ undergoing rotational transitions. The lines have been detected in the direction of the galactic centre SgrB2(M) and SgrB2(N), G34.26+0.15, W31C (G10.62−0.39), W49(N), and W51e, however where absorption lines are observed, argonium is not likely to be in the microwave source, but instead in the gas in front of it.{{cite journal|last1=Schilke|first1=P.|last2=Neufeld|first2=D. A.|last3=Müller|first3=H. S. P.|last4=Comito|first4=C.|last5=Bergin|first5=E. A.|last6=Lis|first6=D. C.|last7=Gerin|first7=M.|last8=Black|first8=J. H.|last9=Wolfire|first9=M.|last10=Indriolo|first10=N.|last11=Pearson|first11=J. C.|last12=Menten|first12=K. M.|last13=Winkel|first13=B.|last14=Sánchez-Monge|first14=Á.|last15=Möller|first15=T.|last16=Godard|first16=B.|last17=Falgarone|first17=E.|title=Ubiquitous argonium (ArH+) in the diffuse interstellar medium: A molecular tracer of almost purely atomic gas|journal=Astronomy & Astrophysics|date=4 June 2014|volume=566|pages=A29|doi=10.1051/0004-6361/201423727|bibcode=2014A&A...566A..29S|arxiv = 1403.7902 |s2cid=44021593}} Emission lines are found in the Crab Nebula.{{cite journal|last1=Barlow|first1=M. J.|last2=Swinyard|first2=B. M.|last3=Owen|first3=P. J.|last4=Cernicharo|first4=J.|last5=Gomez|first5=H. L.|last6=Ivison|first6=R. J.|last7=Krause|first7=O.|last8=Lim|first8=T. L.|last9=Matsuura|first9=M.|last10=Miller|first10=S.|last11=Olofsson|first11=G.|last12=Polehampton|first12=E. T.|title=Detection of a Noble Gas Molecular Ion, 36ArH+, in the Crab Nebula|journal=Science|date=12 December 2013|volume=342|issue=6164|pages=1343–1345|doi=10.1126/science.1243582|pmid=24337290|bibcode=2013Sci...342.1343B|arxiv = 1312.4843 |s2cid=37578581}}

In the Crab Nebula ArH+ occurs in several spots revealed by emission lines. The strongest place is in the Southern Filament. This is also the place with the strongest concentration of Ar+ and Ar2+ ions. The column density of ArH+ in the Crab Nebula is between 1012 and 1013 atoms per square centimeter. Possible the energy required to excite the ions so that then can emit comes from collisions with electrons or hydrogen molecules. Towards the Milky Way centre the column density of ArH+ is around {{val|2e13|u=cm−2}}.

Two isotopologs of argonium 36ArH+ and 38ArH+ are known to be in a distant unnamed galaxy with a redshift of z = 0.88582 (7.5 billion light years away) which is on the line of sight to the blazar PKS 1830−211.{{cite journal|last1=Müller|first1=Holger S. P.|last2=Muller|first2=Sébastien|last3=Schilke|first3=Peter|last4=Bergin|first4=Edwin A.|last5=Black|first5=John H.|last6=Gerin|first6=Maryvonne|last7=Lis|first7=Dariusz C.|last8=Neufeld|first8=David A.|last9=Suri|first9=Sümeyye|title=Detection of extragalactic argonium, ArH+, toward PKS 1830−211|journal=Astronomy & Astrophysics|date=7 October 2015|volume=582|pages=L4|doi=10.1051/0004-6361/201527254|bibcode=2015A&A...582L...4M|arxiv = 1509.06917 |s2cid=10017142}}

Electron neutralization and destruction of argonium outcompletes the formation rate in space if the H2 concentration is below 1 in 10−4.{{Cite journal|arxiv=1607.00375|title=The chemistry of interstellar argonium and other probes of the molecular fraction in diffuse clouds|journal=The Astrophysical Journal|volume=826|issue=2|pages=183|date=1 July 2016|author1=David A. Neufeld|author2= Mark G. Wolfire|doi=10.3847/0004-637X/826/2/183|bibcode = 2016ApJ...826..183N |s2cid=118493563 |doi-access=free }}

History

Using the McMath solar Fourier transform spectrometer at Kitt Peak National Observatory, James W. Brault and Sumner P. Davis observed ArH+ vibration-rotation infrared lines for the first time.{{cite journal|last1=Brault|first1=James W|last2=Davis|first2=Sumner P|title=Fundamental Vibration-Rotation Bands and Molecular Constants for the ArH+ Ground State (1Σ+ )|journal=Physica Scripta|date=1 February 1982|volume=25|issue=2|pages=268–271|doi=10.1088/0031-8949/25/2/004|bibcode=1982PhyS...25..268B|s2cid=250825672 }} J. W. C. Johns also observed the infrared spectrum.{{cite journal|last1=Johns|first1=J.W.C.|title=Spectra of the protonated rare gases|journal=Journal of Molecular Spectroscopy|date=July 1984|volume=106|issue=1|pages=124–133|doi=10.1016/0022-2852(84)90087-0|bibcode=1984JMoSp.106..124J}}

Use

Argon facilitates the reaction of tritium (T2) with double bonds in fatty acids by forming an ArT+ (tritium argonium) intermediate.{{cite journal|last1=Peng|first1=C. T.|title=Mechanism of Addition of Tritium to Oleate by Exposure to Tritium Gas|journal=The Journal of Physical Chemistry|date=April 1966|volume=70|issue=4|pages=1297–1304|doi=10.1021/j100876a053|pmid=5916501}} When gold is sputtered with an argon-hydrogen plasma, the actual displacement of gold is done by ArH+.{{cite journal|last1=Jiménez-Redondo|first1=Miguel|last2=Cueto|first2=Maite|last3=Doménech|first3=José Luis|last4=Tanarro|first4=Isabel|last5=Herrero|first5=Víctor J.|title=Ion kinetics in Ar/H2 cold plasmas: the relevance of ArH+|journal=RSC Advances|date=3 November 2014|volume=4|issue=107|pages=62030–62041|doi=10.1039/C4RA13102A|pmid=26702354|pmc=4685740|bibcode=2014RSCAd...462030J|issn=2046-2069|url=https://digital.csic.es/bitstream/10261/107548/3/2014%20Jimenez-Redondo%20Ar%2bH2%20kinetics.pdf}}

References

{{Reflist|30em}}

{{Noble gas compounds}}

{{Molecules detected in outer space}}

Category:Argon compounds

Category:Cations