artificial enzyme#Nanozymes

{{For|enzyme mimic|enzyme mimic}}See also artificial metalloenzyme.{{Overly detailed|section=Nanozymes|date=January 2022}}Image:Artificial enzyme.jpg

An artificial enzyme is a synthetic organic molecule or ion that recreates one or more functions of an enzyme. It seeks to deliver catalysis at rates and selectivity observed in naturally occurring enzymes.

History

Enzyme catalysis of chemical reactions occur with high selectivity and rate. The substrate is activated in a small part of the enzyme's macromolecule called the active site. There, the binding of a substrate close to functional groups in the enzyme causes catalysis by so-called proximity effects. It is possible to create similar catalysts from small molecules by combining substrate-binding with catalytic functional groups. Classically, artificial enzymes bind substrates using receptors such as cyclodextrin, crown ethers, and calixarene.{{cite book |last1=Breslow |first1=Ronald |title=Artificial Enzymes |date=2006 |publisher=John Wiley & Sons |isbn=978-3-527-60680-1 }}{{page needed|date=April 2020}}{{cite book |last1=Kirby |first1=Anthony John |last2=Hollfelder |first2=Florian |title=From Enzyme Models to Model Enzymes |date=2009 |publisher=Royal Society of Chemistry |isbn=978-0-85404-175-6 }}{{page needed|date=April 2020}}

Artificial enzymes based on amino acids or peptides have expanded the field of artificial enzymes or enzyme mimics. For instance, scaffolded histidine residues mimic certain metalloproteins and enzymes such as hemocyanin, tyrosinase, and catechol oxidase.{{cite journal |last1=Albada |first1=H. Bauke |last2=Soulimani |first2=Fouad |last3=Weckhuysen |first3=Bert M. |last4=Liskamp |first4=Rob M. J. |title=Scaffolded amino acids as a close structural mimic of type-3 copper binding sites |journal=Chemical Communications |date=2007 |issue=46 |pages=4895–7 |doi=10.1039/b709400k |pmid=18361361 }}

Artificial enzymes have been designed from scratch via a computational strategy using Rosetta.{{cite journal |last1=Röthlisberger |first1=Daniela |last2=Khersonsky |first2=Olga |last3=Wollacott |first3=Andrew M. |last4=Jiang |first4=Lin |last5=DeChancie |first5=Jason |last6=Betker |first6=Jamie |last7=Gallaher |first7=Jasmine L. |last8=Althoff |first8=Eric A. |last9=Zanghellini |first9=Alexandre |last10=Dym |first10=Orly |last11=Albeck |first11=Shira |last12=Houk |first12=Kendall N. |last13=Tawfik |first13=Dan S. |last14=Baker |first14=David |title=Kemp elimination catalysts by computational enzyme design |journal=Nature |date=19 March 2008 |volume=453 |issue=7192 |pages=190–195 |doi=10.1038/nature06879 |pmid=18354394 |bibcode=2008Natur.453..190R |doi-access=free }} A December 2014 publication reported active enzymes made from molecules that do not occur in nature.{{cite web |url=http://www.cam.ac.uk/research/news/worlds-first-artificial-enzymes-created-using-synthetic-biology |title=World's first artificial enzymes created using synthetic biology |date=1 December 2014 |publisher=University of Cambridge |access-date=14 December 2016}} In 2016, a book chapter entitled "Artificial Enzymes: The Next Wave" was published.{{cite book |title=Encyclopedia of Physical Organic Chemistry |chapter=Artificial Enzymes: The Next Wave |year=2016 |publisher=American Cancer Society |isbn=978-1-118-47045-9 |editor1-last=Wang |editor1-first=Zerong |first1=Hanjun |last1=Cheng |first2=Xiaoyu |last2=Wang |first3=Hui |last3=Wei |doi=10.1002/9781118468586 }}

Nanozymes

Nanozymes are nanomaterials with enzyme-like characteristics.{{cite journal |last1=Wei |first1=Hui |last2=Wang |first2=Erkang |s2cid=39693417 |title=Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes |journal=Chemical Society Reviews |date=2013 |volume=42 |issue=14 |pages=6060–93 |doi=10.1039/c3cs35486e |pmid=23740388 }}{{cite journal |last1=Wu |first1=Jiangjiexing |last2=Wang |first2=Xiaoyu |last3=Wang |first3=Quan |last4=Lou |first4=Zhangping |last5=Li |first5=Sirong |last6=Zhu |first6=Yunyao |last7=Qin |first7=Li |last8=Wei |first8=Hui |title=Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II) |journal=Chemical Society Reviews |date=2019 |volume=48 |issue=4 |pages=1004–1076 |doi=10.1039/c8cs00457a |pmid=30534770 |s2cid=54474779 }} They have been explored for applications such as biosensing, bioimaging, tumor diagnosis and therapy, and anti-biofouling.{{Cite book |title=纳米材料新特性及生物医学应用 |last=阎锡蕴 |publisher=科学出版社 |isbn=978-7-03-041828-9 |edition=第1版 |location=北京 |year=2014 }}{{page needed|date=April 2020}}{{cite journal |last1=GAO |first1=Li-Zeng |last2=YAN |first2=Xi-Yun |title=纳米酶的发现与应用 |trans-title=Discovery and Current Application of Nanozyme |language=zh |journal=Acta Agronomica Sinica |date=2013 |volume=40 |issue=10 |pages=892 |doi=10.3724/SP.J.1206.2013.00409 |doi-access=free }}{{cite journal |last1=Wang |first1=Xiaoyu |last2=Hu |first2=Yihui |last3=Wei |first3=Hui |s2cid=138012998 |title=Nanozymes in bionanotechnology: from sensing to therapeutics and beyond |journal=Inorganic Chemistry Frontiers |date=2016 |volume=3 |issue=1 |pages=41–60 |doi=10.1039/c5qi00240k }}{{cite journal |last1=Duan |first1=Demin |last2=Fan |first2=Kelong |last3=Zhang |first3=Dexi |last4=Tan |first4=Shuguang |last5=Liang |first5=Mifang |last6=Liu |first6=Yang |last7=Zhang |first7=Jianlin |last8=Zhang |first8=Panhe |last9=Liu |first9=Wei |last10=Qiu |first10=Xiangguo|author10-link=Xiangguo Qiu|author11-link=Gary Kobinger |last11=Kobinger |first11=Gary P. |last12=Fu Gao |first12=George |last13=Yan |first13=Xiyun |title=Nanozyme-strip for rapid local diagnosis of Ebola |journal=Biosensors and Bioelectronics |date=December 2015 |volume=74 |pages=134–141 |doi=10.1016/j.bios.2015.05.025 |pmid=26134291 |doi-access=free }}

= 1990s =

In 1996 and 1997, Dugan et al. discovered superoxide dismutase (SOD)-mimicking activities of fullerene derivatives.{{cite journal |last1=Dugan |first1=Laura L. |last2=Gabrielsen |first2=Joseph K. |last3=Yu |first3=Shan P. |last4=Lin |first4=Tien-Sung |last5=Choi |first5=Dennis W. |s2cid=26139075 |title=Buckminsterfullerenol Free Radical Scavengers Reduce Excitotoxic and Apoptotic Death of Cultured Cortical Neurons |journal=Neurobiology of Disease |date=April 1996 |volume=3 |issue=2 |pages=129–135 |doi=10.1006/nbdi.1996.0013 |pmid=9173920 }}{{cite journal |last1=Dugan |first1=Laura L. |last2=Turetsky |first2=Dorothy M. |last3=Du |first3=Cheng |last4=Lobner |first4=Doug |last5=Wheeler |first5=Mark |last6=Almli |first6=C. Robert |last7=Shen |first7=Clifton K.-F. |last8=Luh |first8=Tien-Yau |last9=Choi |first9=Dennis W. |last10=Lin |first10=Tien-Sung |title=Carboxyfullerenes as neuroprotective agents |journal=Proceedings of the National Academy of Sciences of the United States of America |date=19 August 1997 |volume=94 |issue=17 |pages=9434–9439 |doi=10.1073/pnas.94.17.9434 |pmid=9256500 |pmc=23208 |bibcode=1997PNAS...94.9434D |doi-access=free }}

= 2000s =

The term "nanozyme" was coined in 2004 by Flavio Manea, Florence Bodar Houillon, Lucia Pasquato, and Paolo Scrimin.{{cite journal |last1=Manea |first1=Flavio |last2=Houillon |first2=Florence Bodar |last3=Pasquato |first3=Lucia |last4=Scrimin |first4=Paolo |title=Nanozymes: Gold-Nanoparticle-Based Transphosphorylation Catalysts |journal=Angewandte Chemie International Edition |date=19 November 2004 |volume=43 |issue=45 |pages=6165–6169 |doi=10.1002/anie.200460649 |pmid=15549744 }} A 2005 review article{{cite journal |last1=Pasquato |first1=Lucia |last2=Pengo |first2=Paolo |last3=Scrimin |first3=Paolo |title=Nanozymes: Functional Nanoparticle-based Catalysts |journal=Supramolecular Chemistry |date=January 2005 |volume=17 |issue=1–2 |pages=163–171 |doi=10.1080/10610270412331328817 |s2cid=98249602 }} attributed this term to "analogy with the activity of catalytic polymers (synzymes)", based on the "outstanding catalytic efficiency of some of the functional nanoparticles synthesized". In 2006, nanoceria (CeO2 nanoparticles) was reported to prevent retinal degeneration induced by intracellular peroxides (toxic reactive oxygen intermediates) in rat.{{cite journal |last1=Chen |first1=Junping |last2=Patil |first2=Swanand |last3=Seal |first3=Sudipta |last4=McGinnis |first4=James F. |title=Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides |journal=Nature Nanotechnology |date=29 October 2006 |volume=1 |issue=2 |pages=142–150 |doi=10.1038/nnano.2006.91 |pmid=18654167 |bibcode=2006NatNa...1..142C |s2cid=3093558 }} This was seen as indicating a possible route to a treatment for certain causes of blindness.{{cite journal |last1=Silva |first1=Gabriel A. |title=Seeing the benefits of ceria |journal=Nature Nanotechnology |date=November 2006 |volume=1 |issue=2 |pages=92–94 |doi=10.1038/nnano.2006.111 |pmid=18654154 |bibcode=2006NatNa...1...92S |s2cid=205441553 }} In 2007 intrinsic peroxidase-like activity of ferromagnetic nanoparticles was reported by Yan Xiyun and coworkers as suggesting a wide range of applications in, for example, medicine and environmental chemistry, and the authors designed an immunoassay based on this property.{{cite journal |last1=Gao |first1=Lizeng |last2=Zhuang |first2=Jie |last3=Nie |first3=Leng |last4=Zhang |first4=Jinbin |last5=Zhang |first5=Yu |last6=Gu |first6=Ning |last7=Wang |first7=Taihong |last8=Feng |first8=Jing |last9=Yang |first9=Dongling |last10=Perrett |first10=Sarah |last11=Yan |first11=Xiyun |title=Intrinsic peroxidase-like activity of ferromagnetic nanoparticles |journal=Nature Nanotechnology |date=26 August 2007 |volume=2 |issue=9 |pages=577–583 |doi=10.1038/nnano.2007.260 |pmid=18654371 |bibcode=2007NatNa...2..577G |s2cid=10602418 }}{{cite journal |last1=Perez |first1=J. Manuel |title=Hidden talent |journal=Nature Nanotechnology |date=26 August 2007 |volume=2 |issue=9 |pages=535–536 |doi=10.1038/nnano.2007.282 |pmid=18654361 |bibcode=2007NatNa...2..535P }} Hui Wei and Erkang Wang then (2008) used this property of easily prepared magnetic nanoparticles to demonstrate analytical applications to bioactive molecules, describing a colorimetric assay for hydrogen peroxide ({{chem|H|2|O|2}}) and a sensitive and selective platform for glucose detection.{{cite journal |last1=Wei |first1=Hui |last2=Wang |first2=Erkang |title=Fe3O4 Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection |journal=Analytical Chemistry |date=March 2008 |volume=80 |issue=6 |pages=2250–2254 |doi=10.1021/ac702203f |pmid=18290671 }}

= 2010s =

{{ As of | 2016 }}, many review articles have appeared.{{cite journal |last1=Karakoti |first1=Ajay |last2=Singh |first2=Sanjay |last3=Dowding |first3=Janet M. |last4=Seal |first4=Sudipta |last5=Self |first5=William T. |title=Redox-active radical scavenging nanomaterials |journal=Chemical Society Reviews |date=2010 |volume=39 |issue=11 |pages=4422–32 |doi=10.1039/b919677n |pmid=20717560 |s2cid=9084311 }}{{cite journal |last1=Xie |first1=Jianxin |last2=Zhang |first2=Xiaodan |last3=Wang |first3=Hui |last4=Zheng |first4=Huzhi |last5=Huang |first5=Yuming |last6=Xie |first6=Jianxin |title=Analytical and environmental applications of nanoparticles as enzyme mimetics |journal=TrAC Trends in Analytical Chemistry |date=October 2012 |volume=39 |pages=114–129 |doi=10.1016/j.trac.2012.03.021 }}{{cite journal |last1=Wei |first1=Hui |last2=Wang |first2=Erkang |title=Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes |journal=Chemical Society Reviews |date=2013 |volume=42 |issue=14 |pages=6060–93 |doi=10.1039/c3cs35486e |pmid=23740388 }}{{cite journal |last1=GAO |first1=Li-Zeng |last2=YAN |first2=Xi-Yun |title=Discovery and Current Application of Nanozyme |journal=Acta Agronomica Sinica |date=2013 |volume=40 |issue=10 |pages=892 |doi=10.3724/sp.j.1206.2013.00409 |doi-access=free }}{{cite journal |last1=He |first1=Weiwei |last2=Wamer |first2=Wayne |last3=Xia |first3=Qingsu |last4=Yin |first4=Jun-jie |last5=Fu |first5=Peter P. |title=Enzyme-Like Activity of Nanomaterials |journal=Journal of Environmental Science and Health, Part C |date=29 May 2014 |volume=32 |issue=2 |pages=186–211 |doi=10.1080/10590501.2014.907462 |pmid=24875443 |bibcode=2014JESHC..32..186H |s2cid=1994217 |url=https://cyberleninka.ru/article/n/enzyme-like-activity-of-nanomaterials }}{{cite journal |last1=Lin |first1=Youhui |last2=Ren |first2=Jinsong |last3=Qu |first3=Xiaogang |title=Nano-Gold as Artificial Enzymes: Hidden Talents |journal=Advanced Materials |date=July 2014 |volume=26 |issue=25 |pages=4200–4217 |doi=10.1002/adma.201400238 |pmid=24692212 |bibcode=2014AdM....26.4200L |s2cid=30805500 }}{{cite journal |last1=Lin |first1=Youhui |last2=Ren |first2=Jinsong |last3=Qu |first3=Xiaogang |title=Catalytically Active Nanomaterials: A Promising Candidate for Artificial Enzymes |journal=Accounts of Chemical Research |date=17 January 2014 |volume=47 |issue=4 |pages=1097–1105 |doi=10.1021/ar400250z |pmid=24437921 }}{{cite journal |last1=Prins |first1=Leonard J. |title=Emergence of Complex Chemistry on an Organic Monolayer |journal=Accounts of Chemical Research |date=22 June 2015 |volume=48 |issue=7 |pages=1920–1928 |doi=10.1021/acs.accounts.5b00173 |pmid=26098550 }}{{cite journal |last1=丽 |first1=郑 |title=纳米材料过氧化物模拟酶在比色分析及电化学传感器中的应用 |trans-title=Nanomaterial-based Peroxidase Enzyme Mimics with Applications to Colorimetric Analysis and Electrochemical Sensor |language=zh |journal=材料导报 |date=2015 |volume=29 |issue=3 |pages=55–57, 129 |doi=10.11896/j.issn.1005-023x.2015.03.020 }}{{cite journal |last1=Wang |first1=Xiaoyu |last2=Hu |first2=Yihui |last3=Wei |first3=Hui |title=Nanozymes in bionanotechnology: from sensing to therapeutics and beyond |journal=Inorganic Chemistry Frontiers |date=2016 |volume=3 |issue=1 |pages=41–60 |doi=10.1039/c5qi00240k }}{{cite journal |last1=Gao |first1=Lizeng |last2=Yan |first2=Xiyun |title=Nanozymes: an emerging field bridging nanotechnology and biology |journal=Science China Life Sciences |date=22 March 2016 |volume=59 |issue=4 |pages=400–402 |doi=10.1007/s11427-016-5044-3 |pmid=27002958 |doi-access=free }}{{cite journal |last1=Ragg |first1=Ruben |last2=Tahir |first2=Muhammad N. |last3=Tremel |first3=Wolfgang |title=Solids Go Bio: Inorganic Nanoparticles as Enzyme Mimics |journal=European Journal of Inorganic Chemistry |date=May 2016 |volume=2016 |issue=13–14 |pages=1906–1915 |doi=10.1002/ejic.201501237 }}{{cite journal |last1=Kuah |first1=Evelyn |last2=Toh |first2=Seraphina |last3=Yee |first3=Jessica |last4=Ma |first4=Qian |last5=Gao |first5=Zhiqiang |title=Enzyme Mimics: Advances and Applications |journal=Chemistry - A European Journal |date=13 June 2016 |volume=22 |issue=25 |pages=8404–8430 |doi=10.1002/chem.201504394 |pmid=27062126 }} A book-length treatment appeared in 2015, described as providing "a broad portrait of nanozymes in the context of artificial enzyme research",{{cite book |last1=Wang |first1=Xiaoyu |last2=Guo |first2=Wenjing |last3=Hu |first3=Yihui |last4=Wu |first4=Jiangjiexing |last5=Wei |first5=Hui |title=Nanozymes: Next Wave of Artificial Enzymes |date=2016 |publisher=Springer |isbn=978-3-662-53068-9 }}{{page needed|date=April 2020}} and a 2016 Chinese book on enzyme engineering included a chapter on nanozymes.

{{Cite book

|title=酶工程(第3版)

|last=李正强|first=副 罗贵民 主编 高仁钧

|date=2016-05-01|publisher=化学工业出版社|isbn=978-7-122-25760-4|edition=第3版

}}{{page needed|date=April 2020}}

Colorimetric applications of peroxidase mimesis in different preparations were reported in 2010 and 2011, detecting, respectively, glucose (via carboxyl-modified graphene oxide){{cite journal |last1=Song |first1=Yujun |last2=Qu |first2=Konggang |last3=Zhao |first3=Chao |last4=Ren |first4=Jinsong |last5=Qu |first5=Xiaogang |title=Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection |journal=Advanced Materials |date=5 March 2010 |volume=22 |issue=19 |pages=2206–2210 |doi=10.1002/adma.200903783 |pmid=20564257 |bibcode=2010AdM....22.2206S |s2cid=190019 }} and single-nucleotide polymorphisms (in a label-free method relying on hemin−graphene hybrid nanosheets),{{cite journal |last1=Guo |first1=Yujing |last2=Deng |first2=Liu |last3=Li |first3=Jing |last4=Guo |first4=Shaojun |last5=Wang |first5=Erkang |last6=Dong |first6=Shaojun |title=Hemin−Graphene Hybrid Nanosheets with Intrinsic Peroxidase-like Activity for Label-free Colorimetric Detection of Single-Nucleotide Polymorphism |journal=ACS Nano |date=10 January 2011 |volume=5 |issue=2 |pages=1282–1290 |doi=10.1021/nn1029586 |pmid=21218851 }} with advantages in both cost and convenience. A use of colour to visualise tumour tissues was reported in 2012, using the peroxidase mimesis of magnetic nanoparticles coated with a protein that recognises cancer cells and binds to them.{{cite journal |last1=Fan |first1=Kelong |last2=Cao |first2=Changqian |last3=Pan |first3=Yongxin |last4=Lu |first4=Di |last5=Yang |first5=Dongling |last6=Feng |first6=Jing |last7=Song |first7=Lina |last8=Liang |first8=Minmin |last9=Yan |first9=Xiyun |title=Magnetoferritin nanoparticles for targeting and visualizing tumour tissues |journal=Nature Nanotechnology |date=17 June 2012 |volume=7 |issue=7 |pages=459–464 |doi=10.1038/nnano.2012.90 |pmid=22706697 |bibcode=2012NatNa...7..459F |s2cid=19859273 }}

Also in 2012, nanowires of vanadium pentoxide (vanadia, V2O5) were shown to suppress marine biofouling by mimicry of vanadium haloperoxidase, with anticipated ecological benefits.{{cite journal |last1=Natalio |first1=Filipe |last2=André |first2=Rute |last3=Hartog |first3=Aloysius F. |last4=Stoll |first4=Brigitte |last5=Jochum |first5=Klaus Peter |last6=Wever |first6=Ron |last7=Tremel |first7=Wolfgang |title=Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation |journal=Nature Nanotechnology |date=1 July 2012 |volume=7 |issue=8 |pages=530–535 |doi=10.1038/nnano.2012.91 |pmid=22751222 |bibcode=2012NatNa...7..530N }} A study at a different centre two years later reported V2O5 showing mimicry of glutathione peroxidase in vitro in mammalian cells, suggesting future therapeutic application.{{cite journal |last1=Vernekar |first1=Amit A. |last2=Sinha |first2=Devanjan |last3=Srivastava |first3=Shubhi |last4=Paramasivam |first4=Prasath U. |last5=D'Silva |first5=Patrick |last6=Mugesh |first6=Govindasamy |title=An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires |journal=Nature Communications |date=21 November 2014 |volume=5 |issue=1 |pages=5301 |doi=10.1038/ncomms6301 |pmid=25412933 |bibcode=2014NatCo...5.5301V |doi-access=free }} The same year, a carboxylated fullerene dubbed C3 was reported to be neuroprotective in a primate model of Parkinson's disease.{{cite journal |last1=Dugan |first1=Laura L. |last2=Tian |first2=LinLin |last3=Quick |first3=Kevin L. |last4=Hardt |first4=Josh I. |last5=Karimi |first5=Morvarid |last6=Brown |first6=Chris |last7=Loftin |first7=Susan |last8=Flores |first8=Hugh |last9=Moerlein |first9=Stephen M. |last10=Polich |first10=John |last11=Tabbal |first11=Samer D. |last12=Mink |first12=Jonathan W. |last13=Perlmutter |first13=Joel S. |title=Carboxyfullerene neuroprotection postinjury in Parkinsonian nonhuman primates |journal=Annals of Neurology |date=September 2014 |volume=76 |issue=3 |pages=393–402 |doi=10.1002/ana.24220 |pmid=25043598 |pmc=4165715 }}

In 2015, a supramolecular nanodevice was proposed for bioorthogonal regulation of a transitional metal nanozyme, based on encapsulating the nanozyme in a monolayer of hydrophilic gold nanoparticles, alternately isolating it from the cytoplasm or allowing access according to a gatekeeping receptor molecule controlled by competing guest species; the device, aimed at imaging and therapeutic applications, is of biomimetic size and was successful within the living cell, controlling pro-fluorophore and prodrug activation.{{cite journal |last1=Tonga |first1=Gulen Yesilbag |last2=Jeong |first2=Youngdo |last3=Duncan |first3=Bradley |last4=Mizuhara |first4=Tsukasa |last5=Mout |first5=Rubul |last6=Das |first6=Riddha |last7=Kim |first7=Sung Tae |last8=Yeh |first8=Yi-Cheun |last9=Yan |first9=Bo |last10=Hou |first10=Singyuk |last11=Rotello |first11=Vincent M. |title=Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts |journal=Nature Chemistry |date=23 June 2015 |volume=7 |issue=7 |pages=597–603 |doi=10.1038/nchem.2284 |pmid=26100809 |pmc=5697749 |bibcode=2015NatCh...7..597T }}{{cite journal |last1=Unciti-Broceta |first1=Asier |title=Rise of the nanobots |journal=Nature Chemistry |date=23 June 2015 |volume=7 |issue=7 |pages=538–539 |doi=10.1038/nchem.2291 |pmid=26100798 |bibcode=2015NatCh...7..538U }} An easy means of producing {{ chem | Cu(OH)|2 }} supercages was reported, along with a demonstration of their intrinsic peroxidase mimicry.{{cite journal |last1=Cai |first1=Ren |last2=Yang |first2=Dan |last3=Peng |first3=Shengjie |last4=Chen |first4=Xigao |last5=Huang |first5=Yun |last6=Liu |first6=Yuan |last7=Hou |first7=Weijia |last8=Yang |first8=Shengyuan |last9=Liu |first9=Zhenbao |last10=Tan |first10=Weihong |title=Single Nanoparticle to 3D Supercage: Framing for an Artificial Enzyme System |journal=Journal of the American Chemical Society |date=23 October 2015 |volume=137 |issue=43 |pages=13957–13963 |doi=10.1021/jacs.5b09337 |pmid=26464081 |pmc=4927331 |bibcode=2015JAChS.13713957C }} A scaffolded "INAzyme" ("integrated nanozyme") arrangement was described, locating hemin (a peroxidase mimic) with glucose oxidase (GOx) in sub-micron proximity, providing a fast and efficient enzyme cascade reported as monitoring cerebral brain-cell glucose dynamically in vivo.{{cite journal |last1=Cheng |first1=Hanjun |last2=Zhang |first2=Lei |last3=He |first3=Jian |last4=Guo |first4=Wenjing |last5=Zhou |first5=Zhengyang |last6=Zhang |first6=Xuejin |last7=Nie |first7=Shuming |last8=Wei |first8=Hui |title=Integrated Nanozymes with Nanoscale Proximity for in Vivo Neurochemical Monitoring in Living Brains |journal=Analytical Chemistry |date=6 May 2016 |volume=88 |issue=10 |pages=5489–5497 |doi=10.1021/acs.analchem.6b00975 |pmid=27067749}}

  • {{cite web |date=April 13, 2016 |title=Integrated nanozymes for brain chemistry |website=Phys.org |url=http://phys.org/news/2016-04-nanozymes-brain-chemistry.html}} A method of ionising hydrophobe-stabilised colloid nanoparticles was described, with confirmation of their enzyme mimicry in aqueous dispersion.{{cite journal |last1=Liu |first1=Yuan |last2=Purich |first2=Daniel L. |last3=Wu |first3=Cuichen |last4=Wu |first4=Yuan |last5=Chen |first5=Tao |last6=Cui |first6=Cheng |last7=Zhang |first7=Liqin |last8=Cansiz |first8=Sena |last9=Hou |first9=Weijia |last10=Wang |first10=Yanyue |last11=Yang |first11=Shengyuan |last12=Tan |first12=Weihong |title=Ionic Functionalization of Hydrophobic Colloidal Nanoparticles To Form Ionic Nanoparticles with Enzymelike Properties |journal=Journal of the American Chemical Society |date=20 November 2015 |volume=137 |issue=47 |pages=14952–14958 |doi=10.1021/jacs.5b08533 |pmid=26562739 |pmc=4898269 |bibcode=2015JAChS.13714952L }} De novo designed metallopeptides with self-assembling properties carry out the oxidation reaction of dimethoxyphenol.{{Cite journal |last1=Makhlynets |first1=Olga V. |last2=Gosavi |first2=Pallavi M. |last3=Korendovych |first3=Ivan V. |date=2016-07-25 |title=Short Self-Assembling Peptides Are Able to Bind to Copper and Activate Oxygen |journal=Angewandte Chemie International Edition |language=en |volume=55 |issue=31 |pages=9017–9020 |doi=10.1002/anie.201602480 |issn=1433-7851 |pmc=5064842 |pmid=27276534}}

Field trials in West Africa were announced of a magnetic nanoparticle–amplified rapid low-cost strip test for Ebola virus.{{Cite web |url=https://www.elsevier.com/atlas/story/people/new-ebola-test-to-make-diagnosis-easier,-faster-and-cheaper |title=New Ebola test to make diagnosis easier, faster and cheaper |publisher=Elsevier |date=1 December 2015 }}{{webarchive |url=https://web.archive.org/web/20160814023812/https://www.elsevier.com/atlas/story/people/new-ebola-test-to-make-diagnosis-easier,-faster-and-cheaper |archive-date=14 August 2016}}{{cite journal |last1=Duan |first1=Demin |last2=Fan |first2=Kelong |last3=Zhang |first3=Dexi |last4=Tan |first4=Shuguang |last5=Liang |first5=Mifang |last6=Liu |first6=Yang |last7=Zhang |first7=Jianlin |last8=Zhang |first8=Panhe |last9=Liu |first9=Wei |last10=Qiu |first10=Xiangguo |last11=Kobinger |first11=Gary P. |last12=Fu Gao |first12=George |last13=Yan |first13=Xiyun |title=Nanozyme-strip for rapid local diagnosis of Ebola |journal=Biosensors and Bioelectronics |date=December 2015 |volume=74 |pages=134–141 |doi=10.1016/j.bios.2015.05.025 |pmid=26134291 |doi-access=free }} {{chem|H|2|O|2}} was reported as displacing label DNA, adsorbed to nanoceria, into solution, where it fluoresces, providing a highly sensitive glucose test.{{cite journal |last1=Liu |first1=Biwu |last2=Sun |first2=Ziyi |last3=Huang |first3=Po-Jung Jimmy |last4=Liu |first4=Juewen |title=Hydrogen Peroxide Displacing DNA from Nanoceria: Mechanism and Detection of Glucose in Serum |journal=Journal of the American Chemical Society |date=20 January 2015 |volume=137 |issue=3 |pages=1290–1295 |doi=10.1021/ja511444e |pmid=25574932 |doi-access=free |bibcode=2015JAChS.137.1290L }} Oxidase-like nanoceria was used for developing self-regulated bioassays.{{cite journal |last1=Cheng |first1=Hanjun |last2=Lin |first2=Shichao |last3=Muhammad |first3=Faheem |last4=Lin |first4=Ying-Wu |last5=Wei |first5=Hui |title=Rationally Modulate the Oxidase-like Activity of Nanoceria for Self-Regulated Bioassays |journal=ACS Sensors |date=November 2016 |volume=1 |issue=11 |pages=1336–1343 |doi=10.1021/acssensors.6b00500 }} Multi-enzyme mimicking Prussian blue was developed for therapeutics.{{cite journal |last1=Zhang |first1=Wei |last2=Hu |first2=Sunling |last3=Yin |first3=Jun-Jie |last4=He |first4=Weiwei |last5=Lu |first5=Wei |last6=Ma |first6=Ming |last7=Gu |first7=Ning |last8=Zhang |first8=Yu |title=Prussian Blue Nanoparticles as Multienzyme Mimetics and Reactive Oxygen Species Scavengers |journal=Journal of the American Chemical Society |date=9 March 2016 |volume=138 |issue=18 |pages=5860–5865 |doi=10.1021/jacs.5b12070 |pmid=26918394 |bibcode=2016JAChS.138.5860Z |s2cid=207162387 }} A review on metal organic framework (MOF)-based enzyme mimics was published.{{cite journal |last1=Nath |first1=Ipsita |last2=Chakraborty |first2=Jeet |last3=Verpoort |first3=Francis |title=Metal organic frameworks mimicking natural enzymes: a structural and functional analogy |journal=Chemical Society Reviews |date=2016 |volume=45 |issue=15 |pages=4127–4170 |doi=10.1039/c6cs00047a |pmid=27251115 }} Histidine was used to modulate iron oxide nanoparticles' peroxidase-mimicking activities.{{cite journal |last1=Fan |first1=Kelong |last2=Wang |first2=Hui |last3=Xi |first3=Juqun |last4=Liu |first4=Qi |last5=Meng |first5=Xiangqin |last6=Duan |first6=Demin |last7=Gao |first7=Lizeng |last8=Yan |first8=Xiyun |title=Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site |journal=Chemical Communications |date=2017 |volume=53 |issue=2 |pages=424–427 |doi=10.1039/c6cc08542c |pmid=27959363 |s2cid=1204530 }} Gold nanoparticles' peroxidase-mimicking activities were modulated via a supramolecular strategy for cascade reactions.{{cite journal |last1=Zhao |first1=Yan |last2=Huang |first2=Yucheng |last3=Zhu |first3=Hui |last4=Zhu |first4=Qingqing |last5=Xia |first5=Yunsheng |title=Three-in-One: Sensing, Self-Assembly, and Cascade Catalysis of Cyclodextrin Modified Gold Nanoparticles |journal=Journal of the American Chemical Society |date=16 December 2016 |volume=138 |issue=51 |pages=16645–16654 |doi=10.1021/jacs.6b07590 |pmid=27983807 |bibcode=2016JAChS.13816645Z }} A molecular imprinting strategy was developed to improve the selectivity of Fe3O4 nanozymes with peroxidase-like activity.{{cite journal |last1=Zhang |first1=Zijie |last2=Zhang |first2=Xiaohan |last3=Liu |first3=Biwu |last4=Liu |first4=Juewen |title=Molecular Imprinting on Inorganic Nanozymes for Hundred-fold Enzyme Specificity |journal=Journal of the American Chemical Society |date=5 April 2017 |volume=139 |issue=15 |pages=5412–5419 |doi=10.1021/jacs.7b00601 |pmid=28345903 |bibcode=2017JAChS.139.5412Z }} A new strategy was developed to enhance the peroxidase-mimicking activity of gold nanoparticles by using hot electrons.{{cite journal |last1=Wang |first1=Chen |last2=Shi |first2=Yi |last3=Dan |first3=Yuan-Yuan |last4=Nie |first4=Xing-Guo |last5=Li |first5=Jian |last6=Xia |first6=Xing-Hua |title=Enhanced Peroxidase-Like Performance of Gold Nanoparticles by Hot Electrons |journal=Chemistry - A European Journal |date=17 May 2017 |volume=23 |issue=28 |pages=6717–6723 |doi=10.1002/chem.201605380 |pmid=28217846 }} Researchers designed gold nanoparticle–based integrative nanozymes with both surface-enhanced Raman scattering and peroxidase-mimicking activities for measuring glucose and lactate in living tissues.{{cite journal |last1=Hu |first1=Yihui |last2=Cheng |first2=Hanjun |last3=Zhao |first3=Xiaozhi |last4=Wu |first4=Jiangjiexing |last5=Muhammad |first5=Faheem |last6=Lin |first6=Shichao |last7=He |first7=Jian |last8=Zhou |first8=Liqi |last9=Zhang |first9=Chengping |last10=Deng |first10=Yu |last11=Wang |first11=Peng |last12=Zhou |first12=Zhengyang |last13=Nie |first13=Shuming |last14=Wei |first14=Hui |title=Surface-Enhanced Raman Scattering Active Gold Nanoparticles with Enzyme-Mimicking Activities for Measuring Glucose and Lactate in Living Tissues |journal=ACS Nano |date=June 2017 |volume=11 |issue=6 |pages=5558–5566 |doi=10.1021/acsnano.7b00905 |pmid=28549217 }} Cytochrome c oxidase mimicking activity of Cu2O nanoparticles was modulated by receiving electrons from cytochrome c.{{cite journal |last1=Chen |first1=Ming |last2=Wang |first2=Zhonghua |last3=Shu |first3=Jinxia |last4=Jiang |first4=Xiaohui |last5=Wang |first5=Wei |last6=Shi |first6=Zhen-Hua |last7=Lin |first7=Ying-Wu |title=Mimicking a Natural Enzyme System: Cytochrome c Oxidase-Like Activity of Cu2O Nanoparticles by Receiving Electrons from Cytochrome c |journal=Inorganic Chemistry |date=28 July 2017 |volume=56 |issue=16 |pages=9400–9403 |doi=10.1021/acs.inorgchem.7b01393 |pmid=28753305 }} Fe3O4 nanoparticles were combined with glucose oxidase for tumor therapeutics.{{cite journal |last1=Huo |first1=Minfeng |last2=Wang |first2=Liying |last3=Chen |first3=Yu |last4=Shi |first4=Jianlin |title=Tumor-selective catalytic nanomedicine by nanocatalyst delivery |journal=Nature Communications |date=25 August 2017 |volume=8 |issue=1 |pages=357 |doi=10.1038/s41467-017-00424-8 |pmid=28842577 |pmc=5572465 |bibcode=2017NatCo...8..357H }} Manganese dioxide nanozymes were used as cytoprotective shells.{{cite journal |last1=Li |first1=Wei |last2=Liu |first2=Zhen |last3=Liu |first3=Chaoqun |last4=Guan |first4=Yijia |last5=Ren |first5=Jinsong |last6=Qu |first6=Xiaogang |title=Manganese Dioxide Nanozymes as Responsive Cytoprotective Shells for Individual Living Cell Encapsulation |journal=Angewandte Chemie International Edition |date=23 October 2017 |volume=56 |issue=44 |pages=13661–13665 |doi=10.1002/anie.201706910 |pmid=28884490 }} An Mn3O4 nanozyme for Parkinson's disease (cellular model) was reported.{{cite journal |last1=Singh |first1=Namrata |last2=Savanur |first2=Mohammed Azharuddin |last3=Srivastava |first3=Shubhi |last4=D'Silva |first4=Patrick |last5=Mugesh |first5=Govindasamy |title=A Redox Modulatory Mn3O4 Nanozyme with Multi-Enzyme Activity Provides Efficient Cytoprotection to Human Cells in a Parkinson's Disease Model |journal=Angewandte Chemie International Edition |date=6 November 2017 |volume=56 |issue=45 |pages=14267–14271 |doi=10.1002/anie.201708573 |pmid=28922532 }} Heparin elimination in live rats was monitored with two-dimensional MOF-based peroxidase mimics and AG73 peptide.{{cite journal |last1=Cheng |first1=Hanjun |last2=Liu |first2=Yufeng |last3=Hu |first3=Yihui |last4=Ding |first4=Yubin |last5=Lin |first5=Shichao |last6=Cao |first6=Wen |last7=Wang |first7=Qian |last8=Wu |first8=Jiangjiexing |last9=Muhammad |first9=Faheem |last10=Zhao |first10=Xiaozhi |last11=Zhao |first11=Dan |last12=Li |first12=Zhe |last13=Xing |first13=Hang |last14=Wei |first14=Hui |title=Monitoring of Heparin Activity in Live Rats Using Metal–Organic Framework Nanosheets as Peroxidase Mimics |journal=Analytical Chemistry |date=23 October 2017 |volume=89 |issue=21 |pages=11552–11559 |doi=10.1021/acs.analchem.7b02895 |pmid=28992698 }} Glucose oxidase and iron oxide nanozymes were encapsulated within multi-compartmental hydrogels for incompatible tandem reactions.{{cite journal |last1=Tan |first1=Hongliang |last2=Guo |first2=Song |last3=Dinh |first3=Ngoc-Duy |last4=Luo |first4=Rongcong |last5=Jin |first5=Lin |last6=Chen |first6=Chia-Hung |title=Heterogeneous multi-compartmental hydrogel particles as synthetic cells for incompatible tandem reactions |journal=Nature Communications |date=22 September 2017 |volume=8 |issue=1 |pages=663 |doi=10.1038/s41467-017-00757-4 |pmid=28939810 |pmc=5610232 |bibcode=2017NatCo...8..663T }} A cascade nanozyme biosensor was developed for detection of viable Enterobacter sakazakii.{{cite journal |last1=Zhang |first1=Li |last2=Chen |first2=Yuting |last3=Cheng |first3=Nan |last4=Xu |first4=Yuancong |last5=Huang |first5=Kunlun |last6=Luo |first6=Yunbo |last7=Wang |first7=Peixia |last8=Duan |first8=Demin |last9=Xu |first9=Wentao |title=Ultrasensitive Detection of Viable Enterobacter sakazakii by a Continual Cascade Nanozyme Biosensor |journal=Analytical Chemistry |date=20 September 2017 |volume=89 |issue=19 |pages=10194–10200 |doi=10.1021/acs.analchem.7b01266 |pmid=28881135 }} An integrated nanozyme of GOx@ZIF-8(NiPd) was developed for tandem catalysis.{{cite journal |last1=Wang |first1=Qingqing |last2=Zhang |first2=Xueping |last3=Huang |first3=Liang |last4=Zhang |first4=Zhiquan |last5=Dong |first5=Shaojun |title=GOx@ZIF-8(NiPd) Nanoflower: An Artificial Enzyme System for Tandem Catalysis |journal=Angewandte Chemie International Edition |date=11 December 2017 |volume=56 |issue=50 |pages=16082–16085 |doi=10.1002/anie.201710418 |pmid=29119659 }} Charge-switchable nanozymes were developed.{{cite journal |last1=Gupta |first1=Akash |last2=Das |first2=Riddha |last3=Yesilbag Tonga |first3=Gulen |last4=Mizuhara |first4=Tsukasa |last5=Rotello |first5=Vincent M. |title=Charge-Switchable Nanozymes for Bioorthogonal Imaging of Biofilm-Associated Infections |journal=ACS Nano |date=21 December 2017 |volume=12 |issue=1 |pages=89–94 |doi=10.1021/acsnano.7b07496 |pmid=29244484 |pmc=5846330 }} Site-selective RNA splicing nanozyme was developed.{{cite journal |last1=Petree |first1=Jessica R. |last2=Yehl |first2=Kevin |last3=Galior |first3=Kornelia |last4=Glazier |first4=Roxanne |last5=Deal |first5=Brendan |last6=Salaita |first6=Khalid |title=Site-Selective RNA Splicing Nanozyme: DNAzyme and RtcB Conjugates on a Gold Nanoparticle |journal=ACS Chemical Biology |date=19 December 2017 |volume=13 |issue=1 |pages=215–224 |doi=10.1021/acschembio.7b00437 |pmid=29155548 |pmc=6085866 }} A nanozymes special issue in Progress in Biochemistry and Biophysics was published.

{{Cite web

|url=http://www.pibb.ac.cn/pibbcn/ch/reader/issue_list.aspx?year_id=2018&quarter_id=2

|title=An issue for nanozymes research

|website=www.pibb.ac.cn|access-date=2018-02-06

}} Mn3O4 nanozymes with the ability to scavenge reactive oxygen species were developed and showed in vivo anti-inflammatory activity.{{cite journal |last1=Yao |first1=Jia |last2=Cheng |first2=Yuan |last3=Zhou |first3=Min |last4=Zhao |first4=Sheng |last5=Lin |first5=Shichao |last6=Wang |first6=Xiaoyu |last7=Wu |first7=Jiangjiexing |last8=Li |first8=Sirong |last9=Wei |first9=Hui |title=ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation |journal=Chemical Science |date=2018 |volume=9 |issue=11 |pages=2927–2933 |doi=10.1039/c7sc05476a |pmid=29732076 |pmc=5915792 }} A proposal entitled "A Step into the Future – Applications of Nanoparticle Enzyme Mimics" was presented.{{cite journal |last1=Korschelt |first1=Karsten |last2=Tahir |first2=Muhammad Nawaz |last3=Tremel |first3=Wolfgang |title=A Step into the Future: Applications of Nanoparticle Enzyme Mimics |journal=Chemistry - A European Journal |date=11 July 2018 |volume=24 |issue=39 |pages=9703–9713 |doi=10.1002/chem.201800384 |pmid=29447433 }} Facet-dependent oxidase and peroxidase-like activities of palladium nanoparticles were reported.{{cite journal |last1=Fang |first1=Ge |last2=Li |first2=Weifeng |last3=Shen |first3=Xiaomei |last4=Perez-Aguilar |first4=Jose Manuel |last5=Chong |first5=Yu |last6=Gao |first6=Xingfa |last7=Chai |first7=Zhifang |last8=Chen |first8=Chunying |last9=Ge |first9=Cuicui |last10=Zhou |first10=Ruhong |title=Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria |journal=Nature Communications |date=9 January 2018 |volume=9 |issue=1 |pages=129 |doi=10.1038/s41467-017-02502-3 |pmid=29317632 |pmc=5760645 |bibcode=2018NatCo...9..129F }} Au@Pt multibranched nanostructures as bifunctional nanozymes were developed.{{cite journal |last1=Wu |first1=Jiangjiexing |last2=Qin |first2=Kang |last3=Yuan |first3=Dan |last4=Tan |first4=Jun |last5=Qin |first5=Li |last6=Zhang |first6=Xuejin |last7=Wei |first7=Hui |title=Rational Design of Au@Pt Multibranched Nanostructures as Bifunctional Nanozymes |journal=ACS Applied Materials & Interfaces |date=26 March 2018 |volume=10 |issue=15 |pages=12954–12959 |doi=10.1021/acsami.7b17945 |pmid=29577720 }} Ferritin-coated carbon nanozymes were developed for tumor catalytic therapy.{{cite journal |last1=Fan |first1=Kelong |last2=Xi |first2=Juqun |last3=Fan |first3=Lei |last4=Wang |first4=Peixia |last5=Zhu |first5=Chunhua |last6=Tang |first6=Yan |last7=Xu |first7=Xiangdong |last8=Liang |first8=Minmin |last9=Jiang |first9=Bing |last10=Yan |first10=Xiyun |last11=Gao |first11=Lizeng |title=In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy |journal=Nature Communications |date=12 April 2018 |volume=9 |issue=1 |pages=1440 |doi=10.1038/s41467-018-03903-8 |pmid=29650959 |pmc=5897348 |bibcode=2018NatCo...9.1440F }} CuO nanozymes were developed to kill bacteria in a light-controlled manner.{{cite journal |last1=Karim |first1=Md. Nurul |last2=Singh |first2=Mandeep |last3=Weerathunge |first3=Pabudi |last4=Bian |first4=Pengju |last5=Zheng |first5=Rongkun |last6=Dekiwadia |first6=Chaitali |last7=Ahmed |first7=Taimur |last8=Walia |first8=Sumeet |last9=Della Gaspera |first9=Enrico |last10=Singh |first10=Sanjay |last11=Ramanathan |first11=Rajesh |last12=Bansal |first12=Vipul |title=Visible-Light-Triggered Reactive-Oxygen-Species-Mediated Antibacterial Activity of Peroxidase-Mimic CuO Nanorods |journal=ACS Applied Nano Materials |date=6 March 2018 |volume=1 |issue=4 |pages=1694–1704 |doi=10.1021/acsanm.8b00153 }} Enzymatic activity of oxygenated CNT was studied.{{cite journal |last1=Wang |first1=Huan |last2=Li |first2=Penghui |last3=Yu |first3=Dongqin |last4=Zhang |first4=Yan |last5=Wang |first5=Zhenzhen |last6=Liu |first6=Chaoqun |last7=Qiu |first7=Hao |last8=Liu |first8=Zhen |last9=Ren |first9=Jinsong |last10=Qu |first10=Xiaogang |title=Unraveling the Enzymatic Activity of Oxygenated Carbon Nanotubes and Their Application in the Treatment of Bacterial Infections |journal=Nano Letters |date=15 May 2018 |volume=18 |issue=6 |pages=3344–3351 |doi=10.1021/acs.nanolett.7b05095 |pmid=29763562 |bibcode=2018NanoL..18.3344W }} Nanozymes were used to catalyze the oxidation of L-tyrosine and L-phenylalanine to dopachrome.{{cite journal |last1=Hou |first1=Jianwen |last2=Vázquez-González |first2=Margarita |last3=Fadeev |first3=Michael |last4=Liu |first4=Xia |last5=Lavi |first5=Ronit |last6=Willner |first6=Itamar |title=Catalyzed and Electrocatalyzed Oxidation of l-Tyrosine and l-Phenylalanine to Dopachrome by Nanozymes |journal=Nano Letters |date=10 May 2018 |volume=18 |issue=6 |pages=4015–4022 |doi=10.1021/acs.nanolett.8b01522 |pmid=29745234 |bibcode=2018NanoL..18.4015H }} Nanozymes were presented as an emerging alternative to natural enzyme for biosensing and immunoassays.{{cite journal |last1=Wang |first1=Qingqing |last2=Wei |first2=Hui |last3=Zhang |first3=Zhiquan |last4=Wang |first4=Erkang |last5=Dong |first5=Shaojun |title=Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay |journal=TrAC Trends in Analytical Chemistry |date=August 2018 |volume=105 |pages=218–224 |doi=10.1016/j.trac.2018.05.012 }} A standardized assay was proposed for peroxidase-like nanozymes.{{cite journal |last1=Jiang |first1=Bing |last2=Duan |first2=Demin |last3=Gao |first3=Lizeng |last4=Zhou |first4=Mengjie |last5=Fan |first5=Kelong |last6=Tang |first6=Yan |last7=Xi |first7=Juqun |last8=Bi |first8=Yuhai |last9=Tong |first9=Zhou |last10=Gao |first10=George Fu |last11=Xie |first11=Ni |last12=Tang |first12=Aifa |last13=Nie |first13=Guohui |last14=Liang |first14=Minmin |last15=Yan |first15=Xiyun |title=Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes |journal=Nature Protocols |date=2 July 2018 |volume=13 |issue=7 |pages=1506–1520 |doi=10.1038/s41596-018-0001-1 |pmid=29967547 |s2cid=49558769 }} Semiconductor quantum dots were utilized as nucleases for site-selective photoinduced cleavage of DNA.{{cite journal |last1=Sun |first1=Maozhong |last2=Xu |first2=Liguang |last3=Qu |first3=Aihua |last4=Zhao |first4=Peng |last5=Hao |first5=Tiantian |last6=Ma |first6=Wei |last7=Hao |first7=Changlong |last8=Wen |first8=Xiaodong |last9=Colombari |first9=Felippe M. |last10=de Moura |first10=Andre F. |last11=Kotov |first11=Nicholas A. |last12=Xu |first12=Chuanlai |last13=Kuang |first13=Hua |title=Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles |journal=Nature Chemistry |date=20 July 2018 |volume=10 |issue=8 |pages=821–830 |doi=10.1038/s41557-018-0083-y |pmid=30030537 |bibcode=2018NatCh..10..821S |s2cid=51705012 }} Two-dimensional MOF nanozyme-based sensor arrays were constructed for detecting phosphates and probing their enzymatic hydrolysis.{{cite journal |last1=Qin |first1=Li |last2=Wang |first2=Xiaoyu |last3=Liu |first3=Yufeng |last4=Wei |first4=Hui |title=2D-Metal–Organic-Framework-Nanozyme Sensor Arrays for Probing Phosphates and Their Enzymatic Hydrolysis |journal=Analytical Chemistry |date=25 July 2018 |volume=90 |issue=16 |pages=9983–9989 |doi=10.1021/acs.analchem.8b02428 |pmid=30044077 |s2cid=51715627 }} Nitrogen-doped carbon nanomaterials as specific peroxidase mimics were reported.{{cite journal |last1=Hu |first1=Yihui |last2=Gao |first2=Xuejiao J. |last3=Zhu |first3=Yunyao |last4=Muhammad |first4=Faheem |last5=Tan |first5=Shihua |last6=Cao |first6=Wen |last7=Lin |first7=Shichao |last8=Jin |first8=Zhong |last9=Gao |first9=Xingfa |last10=Wei |first10=Hui |title=Nitrogen-Doped Carbon Nanomaterials as Highly Active and Specific Peroxidase Mimics |journal=Chemistry of Materials |date=20 August 2018 |volume=30 |issue=18 |pages=6431–6439 |doi=10.1021/acs.chemmater.8b02726 |s2cid=106300299 }} Nanozyme sensor arrays were developed to detect analytes from small molecules to proteins and cells.{{cite journal |last1=Wang |first1=Xiaoyu |last2=Qin |first2=Li |last3=Zhou |first3=Min |last4=Lou |first4=Zhangping |last5=Wei |first5=Hui |title=Nanozyme Sensor Arrays for Detecting Versatile Analytes from Small Molecules to Proteins and Cells |journal=Analytical Chemistry |date=3 September 2018 |volume=90 |issue=19 |pages=11696–11702 |doi=10.1021/acs.analchem.8b03374 |pmid=30175585 |s2cid=52144288 }} A copper oxide nanozyme for Parkinson's disease was reported.{{cite journal |last1=Hao |first1=Changlong |last2=Qu |first2=Aihua |last3=Xu |first3=Liguang |last4=Sun |first4=Maozhong |last5=Zhang |first5=Hongyu |last6=Xu |first6=Chuanlai |last7=Kuang |first7=Hua |title=Chiral Molecule-mediated Porous CuxO Nanoparticle Clusters with Antioxidation Activity for Ameliorating Parkinson's Disease |journal=Journal of the American Chemical Society |date=12 December 2018 |volume=141 |issue=2 |pages=1091–1099 |doi=10.1021/jacs.8b11856 |pmid=30540450 |s2cid=195670970 }} Exosome-like nanozyme vesicles for tumor imaging were developed.{{cite journal |last1=Ding |first1=Hui |last2=Cai |first2=Yanjuan |last3=Gao |first3=Lizeng |last4=Liang |first4=Minmin |last5=Miao |first5=Beiping |last6=Wu |first6=Hanwei |last7=Liu |first7=Yang |last8=Xie |first8=Ni |last9=Tang |first9=Aifa |last10=Fan |first10=Kelong |last11=Yan |first11=Xiyun |last12=Nie |first12=Guohui |title=Exosome-like Nanozyme Vesicles for H2O2-Responsive Catalytic Photoacoustic Imaging of Xenograft Nasopharyngeal Carcinoma |journal=Nano Letters |date=12 December 2018 |volume=19 |issue=1 |pages=203–209 |doi=10.1021/acs.nanolett.8b03709 |pmid=30539641 |s2cid=54475613 }} A comprehensive review on nanozymes was published by Chemical Society Reviews. A progress report on nanozymes was published.{{cite journal |last1=Wang |first1=Hui |last2=Wan |first2=Kaiwei |last3=Shi |first3=Xinghua |title=Recent Advances in Nanozyme Research |journal=Advanced Materials |date=27 December 2018 |volume=31 |issue=45 |pages=1805368 |doi=10.1002/adma.201805368 |pmid=30589120 |s2cid=58661537 }} eg occupancy as an effective descriptor was developed for the catalytic activity of perovskite oxide–based peroxidase mimics.{{cite journal |last1=Wang |first1=Xiaoyu |last2=Gao |first2=Xuejiao J. |last3=Qin |first3=Li |last4=Wang |first4=Changda |last5=Song |first5=Li |last6=Zhou |first6=Yong-Ning |last7=Zhu |first7=Guoyin |last8=Cao |first8=Wen |last9=Lin |first9=Shichao |last10=Zhou |first10=Liqi |last11=Wang |first11=Kang |last12=Zhang |first12=Huigang |last13=Jin |first13=Zhong |last14=Wang |first14=Peng |last15=Gao |first15=Xingfa |last16=Wei |first16=Hui |title=eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics |journal=Nature Communications |date=11 February 2019 |volume=10 |issue=1 |pages=704 |doi=10.1038/s41467-019-08657-5 |pmid=30741958 |pmc=6370761 |bibcode=2019NatCo..10..704W }} A Chemical Reviews paper on nanozymes was published.{{cite journal |last1=Huang |first1=Yanyan |last2=Ren |first2=Jinsong |last3=Qu |first3=Xiaogang |title=Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications |journal=Chemical Reviews |date=25 February 2019 |volume=119 |issue=6 |pages=4357–4412 |doi=10.1021/acs.chemrev.8b00672 |pmid=30801188 |s2cid=73479528 }} A single-atom strategy was used to develop nanozymes.{{cite journal |last1=Huang |first1=Liang |last2=Chen |first2=Jinxing |last3=Gan |first3=Linfeng |last4=Wang |first4=Jin |last5=Dong |first5=Shaojun |title=Single-atom nanozymes |journal=Science Advances |date=3 May 2019 |volume=5 |issue=5 |pages=eaav5490 |doi=10.1126/sciadv.aav5490 |pmid=31058221 |pmc=6499548 |bibcode=2019SciA....5.5490H }}{{cite journal |last1=Ma |first1=Wenjie |last2=Mao |first2=Junjie |last3=Yang |first3=Xiaoti |last4=Pan |first4=Cong |last5=Chen |first5=Wenxing |last6=Wang |first6=Ming |last7=Yu |first7=Ping |last8=Mao |first8=Lanqun |last9=Li |first9=Yadong |title=A single-atom Fe–N4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection |journal=Chemical Communications |date=2019 |volume=55 |issue=2 |pages=159–162 |doi=10.1039/c8cc08116f |pmid=30465670 |s2cid=53722839 }}{{cite journal |last1=Zhao |first1=Chao |last2=Xiong |first2=Can |last3=Liu |first3=Xiaokang |last4=Qiao |first4=Man |last5=Li |first5=Zhijun |last6=Yuan |first6=Tongwei |last7=Wang |first7=Jing |last8=Qu |first8=Yunteng |last9=Wang |first9=XiaoQian |last10=Zhou |first10=Fangyao |last11=Xu |first11=Qian |last12=Wang |first12=Shiqi |last13=Chen |first13=Min |last14=Wang |first14=Wenyu |last15=Li |first15=Yafei |last16=Yao |first16=Tao |last17=Wu |first17=Yuen |last18=Li |first18=Yadong |title=Unraveling the enzyme-like activity of heterogeneous single atom catalyst |journal=Chemical Communications |date=2019 |volume=55 |issue=16 |pages=2285–2288 |doi=10.1039/c9cc00199a |pmid=30694288 |s2cid=59339217 }}{{cite journal |last1=Xu |first1=Bolong |last2=Wang |first2=Hui |last3=Wang |first3=Weiwei |last4=Gao |first4=Lizeng |last5=Li |first5=Shanshan |last6=Pan |first6=Xueting |last7=Wang |first7=Hongyu |last8=Yang |first8=Hailong |last9=Meng |first9=Xiangqin |last10=Wu |first10=Qiuwen |last11=Zheng |first11=Lirong |last12=Chen |first12=Shenming |last13=Shi |first13=Xinghua |last14=Fan |first14=Kelong |last15=Yan |first15=Xiyun |last16=Liu |first16=Huiyu |title=A Single-Atom Nanozyme for Wound Disinfection Applications |journal=Angewandte Chemie International Edition |date=April 2019 |volume=58 |issue=15 |pages=4911–4916 |doi=10.1002/anie.201813994 |pmid=30697885 |s2cid=59411242 }} A nanozyme for metal-free bioinspired cascade photocatalysis was reported.{{cite journal |last1=Zhang |first1=Peng |last2=Sun |first2=Dengrong |last3=Cho |first3=Ara |last4=Weon |first4=Seunghyun |last5=Lee |first5=Seonggyu |last6=Lee |first6=Jinwoo |last7=Han |first7=Jeong Woo |last8=Kim |first8=Dong-Pyo |last9=Choi |first9=Wonyong |title=Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis |journal=Nature Communications |date=26 February 2019 |volume=10 |issue=1 |pages=940 |doi=10.1038/s41467-019-08731-y |pmid=30808912 |pmc=6391499 |bibcode=2019NatCo..10..940Z }} Chemical Society Reviews published a tutorial review on nanozymes.{{cite journal |last1=Jiang |first1=Dawei |last2=Ni |first2=Dalong |last3=Rosenkrans |first3=Zachary T. |last4=Huang |first4=Peng |last5=Yan |first5=Xiyun |last6=Cai |first6=Weibo |title=Nanozyme: new horizons for responsive biomedical applications |journal=Chemical Society Reviews |date=2019 |volume=48 |issue=14 |pages=3683–3704 |doi=10.1039/c8cs00718g |pmid=31119258 |pmc=6696937 }} Cascade nanozyme reactions to fix CO2 were reported.{{cite journal |last1=O'Mara |first1=Peter B. |last2=Wilde |first2=Patrick |last3=Benedetti |first3=Tania M. |last4=Andronescu |first4=Corina |last5=Cheong |first5=Soshan |last6=Gooding |first6=J. Justin |last7=Tilley |first7=Richard D. |last8=Schuhmann |first8=Wolfgang |title=Cascade Reactions in Nanozymes: Spatially Separated Active Sites inside Ag-Core–Porous-Cu-Shell Nanoparticles for Multistep Carbon Dioxide Reduction to Higher Organic Molecules |journal=Journal of the American Chemical Society |date=25 August 2019 |volume=141 |issue=36 |pages=14093–14097 |doi=10.1021/jacs.9b07310 |pmid=31448598 |pmc=7551659 |bibcode=2019JAChS.14114093O }} Peroxidase-like gold nanoclusters were used to monitor renal clearance.{{cite journal |last1=Loynachan |first1=Colleen N. |last2=Soleimany |first2=Ava P. |last3=Dudani |first3=Jaideep S. |last4=Lin |first4=Yiyang |last5=Najer |first5=Adrian |last6=Bekdemir |first6=Ahmet |last7=Chen |first7=Qu |last8=Bhatia |first8=Sangeeta N. |last9=Stevens |first9=Molly M. |title=Renal clearable catalytic gold nanoclusters for in vivo disease monitoring |journal=Nature Nanotechnology |date=2 September 2019 |volume=14 |issue=9 |pages=883–890 |doi=10.1038/s41565-019-0527-6 |pmid=31477801 |pmc=7045344 |bibcode=2019NatNa..14..883L }} A copper–carbon hybrid nanozyme was developed for antibacterial therapy.{{cite journal |last1=Xi |first1=Juqun |last2=Wei |first2=Gen |last3=An |first3=Lanfang |last4=Xu |first4=Zhuobin |last5=Xu |first5=Zhilong |last6=Fan |first6=Lei |last7=Gao |first7=Lizeng |title=Copper/Carbon Hybrid Nanozyme: Tuning Catalytic Activity by the Copper State for Antibacterial Therapy |journal=Nano Letters |date=3 October 2019 |volume=19 |issue=11 |pages=7645–7654 |doi=10.1021/acs.nanolett.9b02242 |pmid=31580681 |bibcode=2019NanoL..19.7645X |s2cid=206750807 }} A ferritin nanozyme was developed to treat cerebral malaria.{{cite journal |last1=Zhao |first1=Shuai |last2=Duan |first2=Hongxia |last3=Yang |first3=Yili |last4=Yan |first4=Xiyun |last5=Fan |first5=Kelong |title=Fenozyme Protects the Integrity of the Blood–Brain Barrier against Experimental Cerebral Malaria |journal=Nano Letters |date=November 2019 |volume=19 |issue=12 |pages=8887–8895 |doi=10.1021/acs.nanolett.9b03774 |pmid=31671939 |bibcode=2019NanoL..19.8887Z |s2cid=207815491 }} Accounts of Chemical Research reviewed nanozymes.{{cite journal |last1=Liang |first1=Minmin |last2=Yan |first2=Xiyun |title=Nanozymes: From New Concepts, Mechanisms, and Standards to Applications |journal=Accounts of Chemical Research |date=5 July 2019 |volume=52 |issue=8 |pages=2190–2200 |doi=10.1021/acs.accounts.9b00140 |pmid=31276379 |s2cid=195812591 }} A new strategy called strain effect was developed to modulate metal nanozyme activity.{{cite journal |last1=Xi |first1=Zheng |last2=Cheng |first2=Xun |last3=Gao |first3=Zhuangqiang |last4=Wang |first4=Mengjing |last5=Cai |first5=Tong |last6=Muzzio |first6=Michelle |last7=Davidson |first7=Edwin |last8=Chen |first8=Ou |last9=Jung |first9=Yeonwoong |last10=Sun |first10=Shouheng |last11=Xu |first11=Ye |last12=Xia |first12=Xiaohu |title=Strain Effect in Palladium Nanostructures as Nanozymes |journal=Nano Letters |date=10 December 2019 |volume=20 |issue=1 |pages=272–277 |doi=10.1021/acs.nanolett.9b03782 |pmid=31821008 |osti=1594049 |s2cid=209313254 }} Prussian blue nanozymes were used to detect hydrogen sulfide in the brains of living rats.{{cite journal |last1=Wang |first1=Chao |last2=Wang |first2=Manchao |last3=Zhang |first3=Wang |last4=Liu |first4=Jia |last5=Lu |first5=Mingju |last6=Li |first6=Kai |last7=Lin |first7=Yuqing |title=Integrating Prussian Blue Analog-Based Nanozyme and Online Visible Light Absorption Approach for Continuous Hydrogen Sulfide Monitoring in Brains of Living Rats |journal=Analytical Chemistry |date=13 December 2019 |volume=92 |issue=1 |pages=662–667 |doi=10.1021/acs.analchem.9b04931 |pmid=31834784 |s2cid=209357162 }} Photolyase-like CeO2 was reported.{{cite journal |last1=Tian |first1=Zhimin |last2=Yao |first2=Tianzhu |last3=Qu |first3=Chaoyi |last4=Zhang |first4=Sai |last5=Li |first5=Xuhui |last6=Qu |first6=Yongquan |title=Photolyase-Like Catalytic Behavior of CeO2 |journal=Nano Letters |date=29 October 2019 |volume=19 |issue=11 |pages=8270–8277 |doi=10.1021/acs.nanolett.9b03836 |pmid=31661288 |bibcode=2019NanoL..19.8270T |s2cid=204970215 }} An editorial on nanozymes titled "Can Nanozymes Have an Impact on Sensing?" was published.{{cite journal |last1=Gooding |first1=J. Justin |title=Can Nanozymes Have an Impact on Sensing? |journal=ACS Sensors |date=27 September 2019 |volume=4 |issue=9 |pages=2213–2214 |doi=10.1021/acssensors.9b01760 |pmid=31558030 |doi-access=free }}

= 2020s =

A single-atom nanozyme was developed for sepsis management.{{cite journal |last1=Cao |first1=Fangfang |last2=Zhang |first2=Lu |last3=You |first3=Yawen |last4=Zheng |first4=Lirong |last5=Ren |first5=Jinsong |last6=Qu |first6=Xiaogang |title=An Enzyme-Mimicking Single-Atom Catalyst as an Efficient Multiple Reactive Oxygen and Nitrogen Species Scavenger for Sepsis Management |journal=Angewandte Chemie |date=12 February 2020 |volume=132 |issue=13 |pages=5146–5153 |doi=10.1002/ange.201912182 |bibcode=2020AngCh.132.5146C |s2cid=214232731 }} Self-assembled single-atom nanozyme was developed for photodynamic therapy of tumors.{{cite journal |last1=Wang |first1=Dongdong |last2=Wu |first2=Huihui |last3=Phua |first3=Soo Zeng Fiona |last4=Yang |first4=Guangbao |last5=Qi Lim |first5=Wei |last6=Gu |first6=Long |last7=Qian |first7=Cheng |last8=Wang |first8=Haibao |last9=Guo |first9=Zhen |last10=Chen |first10=Hongzhong |last11=Zhao |first11=Yanli |title=Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor |journal=Nature Communications |date=17 January 2020 |volume=11 |issue=1 |pages=357 |doi=10.1038/s41467-019-14199-7 |pmid=31953423 |pmc=6969186 |bibcode=2020NatCo..11..357W }} An ultrasound-switchable nanozyme against multidrug-resistant bacterial infection was reported.{{cite journal |last1=Sun |first1=Duo |last2=Pang |first2=Xin |last3=Cheng |first3=Yi |last4=Ming |first4=Jiang |last5=Xiang |first5=Sijin |last6=Zhang |first6=Chang |last7=Lv |first7=Peng |last8=Chu |first8=Chengchao |last9=Chen |first9=Xiaolan |last10=Liu |first10=Gang |last11=Zheng |first11=Nanfeng |title=Ultrasound-Switchable Nanozyme Augments Sonodynamic Therapy against Multidrug-Resistant Bacterial Infection |journal=ACS Nano |date=5 February 2020 |volume=14 |issue=2 |pages=2063–2076 |doi=10.1021/acsnano.9b08667 |pmid=32022535 |s2cid=211034499 }} A nanozyme-based H2O2 homeostasis disruptor for chemodynamic tumor therapy was reported.{{cite journal |last1=Sang |first1=Yanjuan |last2=Cao |first2=Fangfang |last3=Li |first3=Wei |last4=Zhang |first4=Lu |last5=You |first5=Yawen |last6=Deng |first6=Qingqing |last7=Dong |first7=Kai |last8=Ren |first8=Jinsong |last9=Qu |first9=Xiaogang |title=Bioinspired Construction of a Nanozyme-Based H2O2 Homeostasis Disruptor for Intensive Chemodynamic Therapy |journal=Journal of the American Chemical Society |date=26 February 2020 |volume=142 |issue=11 |pages=5177–5183 |doi=10.1021/jacs.9b12873 |pmid=32100536 |bibcode=2020JAChS.142.5177S |s2cid=211524485 }} An iridium oxide nanozyme for cascade reaction was developed for tumor therapy.{{cite journal |last1=Zhen |first1=Wenyao |last2=Liu |first2=Yang |last3=Wang |first3=Wei |last4=Zhang |first4=Mengchao |last5=Hu |first5=Wenxue |last6=Jia |first6=Xiaodan |last7=Wang |first7=Chao |last8=Jiang |first8=Xiue |title=Specific 'Unlocking' of a Nanozyme-Based Butterfly Effect To Break the Evolutionary Fitness of Chaotic Tumors |journal=Angewandte Chemie International Edition |date=1 April 2020 |volume=59 |issue=24 |pages=9491–9497 |doi=10.1002/anie.201916142 |pmid=32100926 |s2cid=211523638 }} A book entitled Nanozymology was published.{{Cite book |doi = 10.1007/978-981-15-1490-6|isbn = 978-981-15-1489-0|title = Nanozymology|series = Nanostructure Science and Technology|year = 2020|last1 = Yan|first1 = Xiyun|s2cid = 210954266}}{{page needed|date=April 2020}} A free radical–scavenging nanosponge was engineered for ischemic stroke.{{Cite journal | doi=10.1021/acs.nanolett.9b04974| pmid=31830790| title=Bioinspired Nanosponge for Salvaging Ischemic Stroke via Free Radical Scavenging and Self-Adapted Oxygen Regulating| year=2020| last1=Shi| first1=Jinjin| last2=Yu| first2=Wenyan| last3=Xu| first3=Lihua| last4=Yin| first4=Na| last5=Liu| first5=Wei| last6=Zhang| first6=Kaixiang| last7=Liu| first7=Junjie| last8=Zhang| first8=Zhenzhong| journal=Nano Letters| volume=20| issue=1| pages=780–789| bibcode=2020NanoL..20..780S| s2cid=209342956}} A minireview was published on gold-conjugate-based nanozymes.{{Cite journal |doi = 10.1002/ange.201908625|title = Catalytically Active Peptide-Gold Nanoparticle Conjugates: Prospecting for Artificial Enzymes|year = 2020|last1 = Mikolajczak|first1 = Dorian J.|last2 = Berger|first2 = Allison A.|last3 = Koksch|first3 = Beate|journal = Angewandte Chemie|volume = 132|issue = 23|pages = 8858–8867|bibcode = 2020AngCh.132.8858M|doi-access = free}} SnSe nanosheets as dehydrogenase mimics were developed.{{Cite journal |doi = 10.1002/ange.201913035|title = Two-Dimensional Tin Selenide (Sn Se) Nanosheets Capable of Mimicking Key Dehydrogenases in Cellular Metabolism|year = 2020|last1 = Gao|first1 = Meng|last2 = Wang|first2 = Zhenzhen|last3 = Zheng|first3 = Huizhen|last4 = Wang|first4 = Li|last5 = Xu|first5 = Shujuan|last6 = Liu|first6 = Xi|last7 = Li|first7 = Wei|last8 = Pan|first8 = Yanxia|last9 = Wang|first9 = Weili|last10 = Cai|first10 = Xiaoming|last11 = Wu|first11 = Ren'an|last12 = Gao|first12 = Xingfa|last13 = Li|first13 = Ruibin|journal = Angewandte Chemie|volume = 132|issue = 9|pages = 3647–3652| bibcode=2020AngCh.132.3647G |s2cid = 241399324}} A carbon dot–based topoisomerase I mimic was reported to cleave DNA.{{cite journal |last1=Li |first1=Feng |last2=Li |first2=Shuai |last3=Guo |first3=Xiaocui |last4=Dong |first4=Yuhang |last5=Yao |first5=Chi |last6=Liu |first6=Yangping |last7=Song |first7=Yuguang |last8=Tan |first8=Xiaoli |last9=Gao |first9=Lizeng |last10=Yang |first10=Dayong |title=Chiral carbon dots mimicking topoisomerase I to enantioselectively mediate topological rearrangement of supercoiled DNA |journal=Angewandte Chemie International Edition |date=25 March 2020 |volume=59 |issue=27 |pages=11087–11092 |doi=10.1002/anie.202002904 |pmid=32212366 |s2cid=226196486 }} Nanozyme sensor arrays were developed to detect pesticides.{{cite journal |last1=Zhu |first1=Yunyao |last2=Wu |first2=Jiangjiexing |last3=Han |first3=Lijun |last4=Wang |first4=Xiaoyu |last5=Li |first5=Wei |last6=Guo |first6=Hongchao |last7=Wei |first7=Hui |title=Nanozyme Sensor Arrays Based on Heteroatom-Doped Graphene for Detecting Pesticides |journal=Analytical Chemistry |date=4 May 2020 |volume=92 |issue=11 |pages=7444–7452 |doi=10.1021/acs.analchem.9b05110 |pmid=32363854 |s2cid=218492816 }} Bioorthogonal nanozymes were used to treat bacterial biofilms.{{cite journal |last1=Huang |first1=Rui |last2=Li |first2=Cheng-Hsuan |last3=Cao-Milán |first3=Roberto |last4=He |first4=Luke D. |last5=Makabenta |first5=Jessa Marie |last6=Zhang |first6=Xianzhi |last7=Yu |first7=Erlei |last8=Rotello |first8=Vincent M. |title=Polymer-Based Bioorthogonal Nanocatalysts for the Treatment of Bacterial Biofilms |journal=Journal of the American Chemical Society |date=28 May 2020 |volume=142 |issue=24 |pages=10723–10729 |doi=10.1021/jacs.0c01758 |pmid=32464057 |pmc=7339739|bibcode=2020JAChS.14210723H }} A rhodium nanozyme was developed for treat colon disease.{{cite journal |last1=Miao |first1=Zhaohua |last2=Jiang |first2=Shanshan |last3=Ding |first3=Mengli |last4=Sun |first4=Siyuan |last5=Ma |first5=Yan |last6=Younis |first6=Muhammad Rizwan |last7=He |first7=Gang |last8=Wang |first8=Jingguo |last9=Lin |first9=Jing |last10=Cao |first10=Zhong |last11=Huang |first11=Peng |last12=Zha |first12=Zhengbao |title=Ultrasmall Rhodium Nanozyme with RONS Scavenging and Photothermal Activities for Anti-Inflammation and Antitumor Theranostics of Colon Diseases |journal=Nano Letters |date=29 April 2020 |volume=20 |issue=5 |pages=3079–3089 |doi=10.1021/acs.nanolett.9b05035 |pmid=32348149 |bibcode=2020NanoL..20.3079M |s2cid=217592822 }} A Fe-N-C nanozyme was developed to study drug–drug interactions.{{cite journal |last1=Xu |first1=Yuan |last2=Xue |first2=Jing |last3=Zhou |first3=Qing |last4=Zheng |first4=Yongjun |last5=Chen |first5=Xinghua |last6=Liu |first6=Songqin |last7=Shen |first7=Yanfei |last8=Zhang |first8=Yuanjian |title=Fe-N-C Nanozyme with Both Accelerated and Inhibited Biocatalytic Activities Capable of Accessing Drug-Drug Interaction |journal=Angewandte Chemie International Edition |date=8 June 2020 |volume=59 |issue=34 |pages=14498–14503 |doi=10.1002/anie.202003949 |pmid=32515070 |s2cid=219549595 }} A polymeric nanozyme was developed for second near-infrared photothermal cancer ferrotherapy.{{cite journal |last1=Jiang |first1=Yuyan |last2=Zhao |first2=Xuhui |last3=Huang |first3=Jiaguo |last4=Li |first4=Jingchao |last5=Upputuri |first5=Paul Kumar |last6=Sun |first6=He |last7=Han |first7=Xiao |last8=Pramanik |first8=Manojit |last9=Miao |first9=Yansong |last10=Duan |first10=Hongwei |last11=Pu |first11=Kanyi |last12=Zhang |first12=Ruiping |title=Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy |journal=Nature Communications |date=20 April 2020 |volume=11 |issue=1 |page=1857 |doi=10.1038/s41467-020-15730-x |pmid=32312987 |pmc=7170847 |bibcode=2020NatCo..11.1857J |doi-access=free }} A {{proper name|Cu5.4O}} nanozyme was reported for anti-inflammation therapy.{{cite journal |last1=Liu |first1=Tengfei |last2=Xiao |first2=Bowen |last3=Xiang |first3=Fei |last4=Tan |first4=Jianglin |last5=Chen |first5=Zhuo |last6=Zhang |first6=Xiaorong |last7=Wu |first7=Chengzhou |last8=Mao |first8=Zhengwei |last9=Luo |first9=Gaoxing |last10=Chen |first10=Xiaoyuan |last11=Deng |first11=Jun |title=Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases |journal=Nature Communications |date=3 June 2020 |volume=11 |issue=1 |page=2788 |doi=10.1038/s41467-020-16544-7 |pmid=32493916 |pmc=7270130 |bibcode=2020NatCo..11.2788L |doi-access=free }} A CeO2@ZIF-8 nanozyme was developed to treat reperfusion-induced injury in ischemic stroke.{{cite journal |last1=He |first1=Lizhen |last2=Huang |first2=Guanning |last3=Liu |first3=Hongxing |last4=Sang |first4=Chengcheng |last5=Liu |first5=Xinxin |last6=Chen |first6=Tianfeng |title=Highly bioactive zeolitic imidazolate framework-8–capped nanotherapeutics for efficient reversal of reperfusion-induced injury in ischemic stroke |journal=Science Advances |date=1 March 2020 |volume=6 |issue=12 |pages=eaay9751 |doi=10.1126/sciadv.aay9751 |pmid=32206718 |pmc=7080448 |bibcode=2020SciA....6.9751H |doi-access=free }} Peroxidase-like activity of Fe3O4 was explored to study the electrocatalytic kinetics at the single-molecule/single-particle level.{{cite journal |last1=Xiao |first1=Yi |last2=Hong |first2=Jaeyoung |last3=Wang |first3=Xiao |last4=Chen |first4=Tao |last5=Hyeon |first5=Taeghwan |last6=Xu |first6=Weilin |title=Revealing Kinetics of Two-Electron Oxygen Reduction Reaction at Single-Molecule Level |journal=Journal of the American Chemical Society |date=16 July 2020 |volume=142 |issue=30 |pages=13201–13209 |doi=10.1021/jacs.0c06020 |pmid=32628842 |bibcode=2020JAChS.14213201X |s2cid=220387010 }} A Cu-TA nanozyme was fabricated to scavenge reactive oxygen species from cigarette smoke.{{cite journal |last1=Lin |first1=Shichao |last2=Cheng |first2=Yuan |last3=Zhang |first3=He |last4=Wang |first4=Xiaoyu |last5=Zhang |first5=Yuye |last6=Zhang |first6=Yuanjian |last7=Miao |first7=Leiying |last8=Zhao |first8=Xiaozhi |last9=Wei |first9=Hui |title=Copper Tannic Acid Coordination Nanosheet: A Potent Nanozyme for Scavenging ROS from Cigarette Smoke |journal=Small |date=29 August 2019 |volume=16 |issue=27 |pages=1902123 |doi=10.1002/smll.201902123 |pmid=31468655 |s2cid=201672628 }} A metalloenzyme-like copper nanocluster was reported to have anticancer and imaging activities simultaneously.{{cite journal |last1=Gao |first1=Liang |last2=Zhang |first2=Ya |last3=Zhao |first3=Lina |last4=Niu |first4=Wenchao |last5=Tang |first5=Yuhua |last6=Gao |first6=Fuping |last7=Cai |first7=Pengju |last8=Yuan |first8=Qing |last9=Wang |first9=Xiayan |last10=Jiang |first10=Huaidong |last11=Gao |first11=Xueyun |title=An artificial metalloenzyme for catalytic cancer-specific DNA cleavage and operando imaging |journal=Science Advances |date=1 July 2020 |volume=6 |issue=29 |pages=eabb1421 |doi=10.1126/sciadv.abb1421 |pmid=32832637 |pmc=7439319 |bibcode=2020SciA....6.1421G |s2cid=220601168 |doi-access=free }} An integrated nanozyme was developed for anti-inflammation therapy.{{cite journal |last1=Liu |first1=Yufeng |last2=Cheng |first2=Yuan |last3=Zhang |first3=He |last4=Zhou |first4=Min |last5=Yu |first5=Yijun |last6=Lin |first6=Shichao |last7=Jiang |first7=Bo |last8=Zhao |first8=Xiaozhi |last9=Miao |first9=Leiying |last10=Wei |first10=Chuan-Wan |last11=Liu |first11=Quanyi |last12=Lin |first12=Ying-Wu |last13=Du |first13=Yan |last14=Butch |first14=Christopher J. |last15=Wei |first15=Hui |title=Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy |journal=Science Advances |date=1 July 2020 |volume=6 |issue=29 |pages=eabb2695 |doi=10.1126/sciadv.abb2695 |pmid=32832640 |pmc=7439611 |bibcode=2020SciA....6.2695L |s2cid=220601175 |doi-access=free }} Enhanced enzyme-like catalytic activity was reported under non-equilibrium conditions for gold nanozymes.{{cite journal |last1=Chen |first1=Rui |last2=Neri |first2=Simona |last3=Prins |first3=Leonard J. |title=Enhanced catalytic activity under non-equilibrium conditions |journal=Nature Nanotechnology |date=20 July 2020 |volume=15 |issue=10 |pages=868–874 |doi=10.1038/s41565-020-0734-1 |pmid=32690887 |bibcode=2020NatNa..15..868C |hdl=11577/3351418 |s2cid=220656706 |hdl-access=free }} A density functional theory method was proposed to predict the activities of peroxidase-like nanozymes.{{cite journal |last1=Shen |first1=Xiaomei |last2=Wang |first2=Zhenzhen |last3=Gao |first3=Xingfa |last4=Zhao |first4=Yuliang |title=Density Functional Theory-Based Method to Predict the Activities of Nanomaterials as Peroxidase Mimics |journal=ACS Catalysis |date=6 November 2020 |volume=10 |issue=21 |pages=12657–12665 |doi=10.1021/acscatal.0c03426 |s2cid=225336098 }} A hydrolytic nanozyme was developed to construct an immunosensor.{{cite journal |last1=Nandhakumar |first1=Ponnusamy |last2=Kim |first2=Gyeongho |last3=Park |first3=Seonhwa |last4=Kim |first4=Seonghye |last5=Kim |first5=Suhkmann |last6=Park |first6=Jin Kyoon |last7=Lee |first7=Nam-Sihk |last8=Yoon |first8=Young Ho |last9=Yang |first9=Haesik |title=Metal Nanozyme with Ester Hydrolysis Activity in the Presence of Ammonia-Borane and Its Use in a Sensitive Immunosensor |journal=Angewandte Chemie International Edition |date=7 December 2020 |volume=59 |issue=50 |pages=22419–22422 |doi=10.1002/anie.202009737 |pmid=32875647 |s2cid=221467334 }} An orally administered nanozyme was developed for inflammatory bowel disease therapy.{{cite journal |last1=Zhao |first1=Sheng |last2=Li |first2=Yixuan |last3=Liu |first3=Quanyi |last4=Li |first4=Sirong |last5=Cheng |first5=Yuan |last6=Cheng |first6=Chaoqun |last7=Sun |first7=Ziying |last8=Du |first8=Yan |last9=Butch |first9=Christopher J. |last10=Wei |first10=Hui |title=An Orally Administered CeO 2 @Montmorillonite Nanozyme Targets Inflammation for Inflammatory Bowel Disease Therapy |journal=Advanced Functional Materials |date=November 2020 |volume=30 |issue=45 |pages=2004692 |doi=10.1002/adfm.202004692 |s2cid=224911666 }} A ligand-dependent activity engineering strategy was reported to develop a glutathione peroxidase–mimicking MIL-47(V) metal–organic framework nanozyme for therapy.{{cite journal |last1=Wu |first1=Jiangjiexing |last2=Yu |first2=Yijun |last3=Cheng |first3=Yuan |last4=Cheng |first4=Chaoqun |last5=Zhang |first5=Yihong |last6=Jiang |first6=Bo |last7=Zhao |first7=Xiaozhi |last8=Miao |first8=Leiying |last9=Wei |first9=Hui |title=Ligand-Dependent Activity Engineering of Glutathione Peroxidase-Mimicking MIL-47(V) Metal–Organic Framework Nanozyme for Therapy |journal=Angewandte Chemie International Edition |date=18 January 2021 |volume=60 |issue=3 |pages=1227–1234 |doi=10.1002/anie.202010714 |pmid=33022864 |s2cid=222180771 }} A single-site nanozyme was developed for tumor therapy.{{cite journal |last1=Wang |first1=Dongdong |last2=Wu |first2=Huihui |last3=Wang |first3=Changlai |last4=Gu |first4=Long |last5=Chen |first5=Hongzhong |last6=Jana |first6=Deblin |last7=Feng |first7=Lili |last8=Liu |first8=Jiawei |last9=Wang |first9=Xueying |last10=Xu |first10=Pengping |last11=Guo |first11=Zhen |last12=Chen |first12=Qianwang |last13=Zhao |first13=Yanli |title=Self-Assembled Single-Site Nanozyme for Tumor-Specific Amplified Cascade Enzymatic Therapy |journal=Angewandte Chemie International Edition |date=8 February 2021 |volume=60 |issue=6 |pages=3001–3007 |doi=10.1002/anie.202008868 |pmid=33091204 |hdl=10356/146292 |s2cid=225053668 |hdl-access=free }} A SOD-like nanozyme was developed to regulate the mitochondria and neural cell function.{{cite journal |last1=Singh |first1=Namrata |last2=NaveenKumar |first2=Somanathapura K. |last3=Geethika |first3=Motika |last4=Mugesh |first4=Govindasamy |title=A Cerium Vanadate Nanozyme with Specific Superoxide Dismutase Activity Regulates Mitochondrial Function and ATP Synthesis in Neuronal Cells |journal=Angewandte Chemie International Edition |date=8 February 2021 |volume=60 |issue=6 |pages=3121–3130 |doi=10.1002/anie.202011711 |pmid=33079465 |s2cid=224812443 }} A Pd12 coordination cage as a photoregulated oxidase-like nanozyme was developed.{{cite journal |last1=Bhattacharyya |first1=Soumalya |last2=Ali |first2=Sk Rajab |last3=Venkateswarulu |first3=Mangili |last4=Howlader |first4=Prodip |last5=Zangrando |first5=Ennio |last6=De |first6=Mrinmoy |last7=Mukherjee |first7=Partha Sarathi |title=Self-Assembled Pd 12 Coordination Cage as Photoregulated Oxidase-Like Nanozyme |journal=Journal of the American Chemical Society |date=4 November 2020 |volume=142 |issue=44 |pages=18981–18989 |doi=10.1021/jacs.0c09567 |pmid=33104330 |bibcode=2020JAChS.14218981B |s2cid=225083774 }} An NADPH oxidase-like nanozyme was developed.{{cite journal |last1=Wu |first1=Di |last2=Li |first2=Jingkun |last3=Xu |first3=Shujuan |last4=Xie |first4=Qianqian |last5=Pan |first5=Yanxia |last6=Liu |first6=Xi |last7=Ma |first7=Ronglin |last8=Zheng |first8=Huizhen |last9=Gao |first9=Meng |last10=Wang |first10=Weili |last11=Li |first11=Jia |last12=Cai |first12=Xiaoming |last13=Jaouen |first13=Frédéric |last14=Li |first14=Ruibin |title=Engineering Fe–N Doped Graphene to Mimic Biological Functions of NADPH Oxidase in Cells |journal=Journal of the American Chemical Society |date=18 November 2020 |volume=142 |issue=46 |pages=19602–19610 |doi=10.1021/jacs.0c08360 |pmid=33108194 |bibcode=2020JAChS.14219602W |s2cid=225100148 |url=https://hal.umontpellier.fr/hal-03134484/file/FeNGR%20Paper%20original%20for%20HAL.pdf }} A catalase-like nanozyme was developed for tumor therapy.{{cite journal |last1=Li |first1=Yongxin |last2=Sun |first2=Pan |last3=Zhao |first3=Luyang |last4=Yan |first4=Xuehai |last5=Ng |first5=Dennis K. P. |last6=Lo |first6=Pui-Chi |title=Ferric Ion Driven Assembly of Catalase-like Supramolecular Photosensitizing Nanozymes for Combating Hypoxic Tumors |journal=Angewandte Chemie |date=14 December 2020 |volume=132 |issue=51 |pages=23428–23438 |doi=10.1002/ange.202010005 |bibcode=2020AngCh.13223428L |s2cid=241673359 }} A defect-rich adhesive molybdenum disulfide/reduced graphene oxide nanozyme was developed for anti-bacterial activity.{{cite journal |last1=Wang |first1=Longwei |last2=Gao |first2=Fene |last3=Wang |first3=Aizhu |last4=Chen |first4=Xuanyu |last5=Li |first5=Hao |last6=Zhang |first6=Xiao |last7=Zheng |first7=Hong |last8=Ji |first8=Rui |last9=Li |first9=Bo |last10=Yu |first10=Xin |last11=Liu |first11=Jing |last12=Gu |first12=Zhanjun |last13=Chen |first13=Fulin |last14=Chen |first14=Chunying |title=Defect-Rich Adhesive Molybdenum Disulfide/rGO Vertical Heterostructures with Enhanced Nanozyme Activity for Smart Bacterial Killing Application |journal=Advanced Materials |date=December 2020 |volume=32 |issue=48 |pages=2005423 |doi=10.1002/adma.202005423 |pmid=33118265 |bibcode=2020AdM....3205423W |s2cid=226038440 }} A MOF@COF nanozyme was developed for anti-bacterial activity.{{cite journal |last1=Zhang |first1=Lu |last2=Liu |first2=Zhengwei |last3=Deng |first3=Qingqing |last4=Sang |first4=Yanjuan |last5=Dong |first5=Kai |last6=Ren |first6=Jinsong |last7=Qu |first7=Xiaogang |title=Nature-Inspired Construction of MOF@COF Nanozyme with Active Sites in Tailored Microenvironment and Pseudopodia-Like Surface for Enhanced Bacterial Inhibition |journal=Angewandte Chemie International Edition |date=14 December 2020 |volume=60 |issue=7 |pages=3469–3474 |doi=10.1002/anie.202012487 |pmid=33118263 |s2cid=226080916 }} Plasmonic nanozymes were reported.{{cite journal |last1=Zhang |first1=Yang |last2=Villarreal |first2=Esteban |last3=Li |first3=Guangfang Grace |last4=Wang |first4=Wei |last5=Wang |first5=Hui |title=Plasmonic Nanozymes: Engineered Gold Nanoparticles Exhibit Tunable Plasmon-Enhanced Peroxidase-Mimicking Activity |journal=The Journal of Physical Chemistry Letters |date=5 November 2020 |volume=11 |issue=21 |pages=9321–9328 |doi=10.1021/acs.jpclett.0c02640 |pmid=33089980 |s2cid=224823575 }} Tumor microenvironment–responsive nanozyme was developed for tumor therapy.{{cite journal |last1=Wang |first1=Zhiyi |last2=Li |first2=Ziyuan |last3=Sun |first3=Zhaoli |last4=Wang |first4=Shuren |last5=Ali |first5=Zeeshan |last6=Zhu |first6=Sihao |last7=Liu |first7=Sha |last8=Ren |first8=Qiushi |last9=Sheng |first9=Fugeng |last10=Wang |first10=Baodui |last11=Hou |first11=Yanglong |title=Visualization nanozyme based on tumor microenvironment "unlocking" for intensive combination therapy of breast cancer |journal=Science Advances |date=1 November 2020 |volume=6 |issue=48 |pages=eabc8733 |doi=10.1126/sciadv.abc8733 |pmid=33246959 |pmc=7695480 |bibcode=2020SciA....6.8733W }} A protein-engineering-inspired method was developed to design highly active nanozymes.{{cite journal |last1=Wu |first1=Jiangjiexing |last2=Wang |first2=Zhenzhen |last3=Jin |first3=Xin |last4=Zhang |first4=Shuo |last5=Li |first5=Tong |last6=Zhang |first6=Yihong |last7=Xing |first7=Hang |last8=Yu |first8=Yang |last9=Zhang |first9=Huigang |last10=Gao |first10=Xingfa |last11=Wei |first11=Hui |title=Hammett Relationship in Oxidase-Mimicking Metal–Organic Frameworks Revealed through a Protein-Engineering-Inspired Strategy |journal=Advanced Materials |date=January 2021 |volume=33 |issue=3 |pages=2005024 |doi=10.1002/adma.202005024 |pmid=33283334 |bibcode=2021AdM....3305024W |s2cid=227528103 }} An editorial on nanozymes definition was published.{{cite journal |last1=Scott |first1=Susannah |last2=Zhao |first2=Huimin |last3=Dey |first3=Abhishek |last4=Gunnoe |first4=T. Brent |title=Nano-Apples and Orange-Zymes |journal=ACS Catalysis |date=4 December 2020 |volume=10 |issue=23 |pages=14315–14317 |doi=10.1021/acscatal.0c05047 |doi-access=free }} A nanozyme therapy for hyperuricemia and ischemic stroke was developed.{{cite journal |last1=Xi |first1=Juqun |last2=Zhang |first2=Ruofei |last3=Wang |first3=Liming |last4=Xu |first4=Wei |last5=Liang |first5=Qian |last6=Li |first6=Jingyun |last7=Jiang |first7=Jian |last8=Yang |first8=Yili |last9=Yan |first9=Xiyun |last10=Fan |first10=Kelong |last11=Gao |first11=Lizeng |title=A Nanozyme-Based Artificial Peroxisome Ameliorates Hyperuricemia and Ischemic Stroke |journal=Advanced Functional Materials |date=6 December 2020 |volume=31 |issue=9 |pages=2007130 |doi=10.1002/adfm.202007130| issn=1616-301X |s2cid=230609877 }} Chemistry World published a perspective on artificial enzymes and nanozymes.{{Cite web|url=https://www.chemistryworld.com/holy-grails/the-grails/artificial-enzymes|title=Artificial enzymes: catalysis by design|first=Jamie|last=Durrani2020-09-28T13:45:00+01:00|website=Chemistry World}} A review on single-atom catalysts, including single-atom nanozymes, was published.{{cite journal |last1=Jiao |first1=Lei |last2=Xu |first2=Weiqing |last3=Wu |first3=Yu |last4=Yan |first4=Hongye |last5=Gu |first5=Wenling |last6=Du |first6=Dan |last7=Lin |first7=Yuehe |last8=Zhu |first8=Chengzhou |title=Single-atom catalysts boost signal amplification for biosensing |journal=Chemical Society Reviews |date=1 February 2021 |volume=50 |issue=2 |pages=750–765 |doi=10.1039/D0CS00367K |pmid=33306069 |s2cid=228100965 }} Peroxidase-like mixed-FeCo-oxide-based surface-textured nanostructures (MTex) were used for biofilm eradication.{{cite journal |last1=Kumari |first1=Nitee |last2=Kumar |first2=Sumit |last3=Karmacharya |first3=Mamata |last4=Dubbu |first4=Sateesh |last5=Kwon |first5=Taewan |last6=Singh |first6=Varsha |last7=Chae |first7=Keun Hwa |last8=Kumar |first8=Amit |last9=Cho |first9=Yoon-Kyoung |last10=Lee |first10=In Su |title=Surface-Textured Mixed-Metal-Oxide Nanocrystals as Efficient Catalysts for ROS Production and Biofilm Eradication |journal=Nano Letters |date=13 January 2021 |volume=21 |issue=1 |pages=279–287 |doi=10.1021/acs.nanolett.0c03639 |pmid=33306397 |bibcode=2021NanoL..21..279K |s2cid=228170364 }} A nanozyme with better kinetics than natural peroxidase was developed.{{cite journal |last1=Komkova |first1=Maria A. |last2=Ibragimova |first2=Olga A. |last3=Karyakina |first3=Elena E. |last4=Karyakin |first4=Arkady A. |title=Catalytic Pathway of Nanozyme 'Artificial Peroxidase' with 100-Fold Greater Bimolecular Rate Constants Compared to Those of the Enzyme |journal=The Journal of Physical Chemistry Letters |date=14 January 2021 |volume=12 |issue=1 |pages=171–176 |doi=10.1021/acs.jpclett.0c03014 |pmid=33321035 |s2cid=229285144 }} A self-protecting nanozyme was developed for Alzheimer's disease.{{cite journal |last1=Ma |first1=Mengmeng |last2=Liu |first2=Zhenqi |last3=Gao |first3=Nan |last4=Pi |first4=Zifeng |last5=Du |first5=Xiubo |last6=Ren |first6=Jinsong |last7=Qu |first7=Xiaogang |title=Self-Protecting Biomimetic Nanozyme for Selective and Synergistic Clearance of Peripheral Amyloid-β in an Alzheimer's Disease Model |journal=Journal of the American Chemical Society |date=30 December 2020 |volume=142 |issue=52 |pages=21702–21711 |doi=10.1021/jacs.0c08395 |pmid=33326236 |bibcode=2020JAChS.14221702M |s2cid=229302798 }} CuSe nanozymes was developed to treat Parkinson's disease.{{cite journal |last1=Liu |first1=Hanghang |last2=Han |first2=Yaobao |last3=Wang |first3=Tingting |last4=Zhang |first4=Hao |last5=Xu |first5=Qi |last6=Yuan |first6=Jiaxin |last7=Li |first7=Zhen |title=Targeting Microglia for Therapy of Parkinson's Disease by Using Biomimetic Ultrasmall Nanoparticles |journal=Journal of the American Chemical Society |date=30 December 2020 |volume=142 |issue=52 |pages=21730–21742 |doi=10.1021/jacs.0c09390 |pmid=33315369 |bibcode=2020JAChS.14221730L |s2cid=229178158 }} A nanocluster-based nanozyme was developed.{{cite journal |last1=Liu |first1=Haile |last2=Li |first2=Yonghui |last3=Sun |first3=Si |last4=Xin |first4=Qi |last5=Liu |first5=Shuhu |last6=Mu |first6=Xiaoyu |last7=Yuan |first7=Xun |last8=Chen |first8=Ke |last9=Wang |first9=Hao |last10=Varga |first10=Kalman |last11=Mi |first11=Wenbo |last12=Yang |first12=Jiang |last13=Zhang |first13=Xiao-Dong |title=Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions |journal=Nature Communications |date=7 January 2021 |volume=12 |issue=1 |pages=114 |doi=10.1038/s41467-020-20275-0 |pmid=33414464 |pmc=7791071 |arxiv=2012.09527 |bibcode=2021NatCo..12..114L }} Glucose oxidase–like gold nanoparticles combined with cyclodextran were used for chiral catalysis.{{cite journal |last1=Liu |first1=Yu |last2=Chen |first2=Lei |last3=Chen |first3=Yong |last4=Zhang |first4=Yi |title=Photo-Controllable Catalysis and Chiral Monosaccharide Recognition Induced by Cyclodextrin Derivatives |journal=Angewandte Chemie International Edition |date=5 January 2021 |volume=60 |issue=14 |pages=7654–7658 |doi=10.1002/anie.202017001| issn=1433-7851 |pmid=33400383 |s2cid=230668470 }} An artificial binuclear copper monooxygenase in a MOF was developed.{{cite journal |last1=Feng |first1=Xuanyu |last2=Song |first2=Yang |last3=Chen |first3=Justin S. |last4=Xu |first4=Ziwan |last5=Dunn |first5=Soren J. |last6=Lin |first6=Wenbin |title=Rational Construction of an Artificial Binuclear Copper Monooxygenase in a Metal–Organic Framework |journal=Journal of the American Chemical Society |date=20 January 2021 |volume=143 |issue=2 |pages=1107–1118 |doi=10.1021/jacs.0c11920| issn=0002-7863 |pmid=33411525 |bibcode=2021JAChS.143.1107F |s2cid=231192930 }} A review on highly efficient design of nanozymes was published.{{cite journal |last1=武江洁星 |first1=魏辉 |last2=Jiangjiexing Wu |first2=Hui Wei |title=浅谈纳米酶的高效设计策略 |trans-title=Efficient Design Strategies for Nanozymes |language=Chinese |journal=化学进展 |date=24 January 2021 |volume=33 |issue=1 |pages=42 |doi=10.7536/PC201117 |doi-broken-date=1 January 2025 }} Ni–Pt peroxidase mimics were developed for bioanalysis.{{cite journal |last1=Xi |first1=Zheng |last2=Wei |first2=Kecheng |last3=Wang |first3=Qingxiao |last4=Kim |first4=Moon J. |last5=Sun |first5=Shouheng |last6=Fung |first6=Victor |last7=Xia |first7=Xiaohu |title=Nickel–Platinum Nanoparticles as Peroxidase Mimics with a Record High Catalytic Efficiency |journal=Journal of the American Chemical Society |date=24 February 2021 |volume=143 |issue=7 |pages=2660–2664 |doi=10.1021/jacs.0c12605 |pmid=33502185 |bibcode=2021JAChS.143.2660X |osti=1766375 |s2cid=231766217 }} A POM-based nanozyme was reported to protect cells from reactive oxygen species.{{cite journal |last1=Gong |first1=Lige |last2=Ding |first2=Wenqiao |last3=Chen |first3=Ying |last4=Yu |first4=Kai |last5=Guo |first5=Changhong |last6=Zhou |first6=Baibin |title=Inhibition of Mitochondrial ATP Synthesis and Regulation of Oxidative Stress Based on {SbW 8 O 30 } Determined by Single-Cell Proteomics Analysis |journal=Angewandte Chemie |date=6 April 2021 |volume=133 |issue=15 |pages=8425–8432 |doi=10.1002/ange.202100297 |s2cid=242400655 }} A gating strategy was used to prepare selective nanozymes.{{cite journal |last1=Kim |first1=Minju |last2=Dygas |first2=Miroslaw |last3=Sobolev |first3=Yaroslav I. |last4=Beker |first4=Wiktor |last5=Zhuang |first5=Qiang |last6=Klucznik |first6=Tomasz |last7=Ahumada |first7=Guillermo |last8=Ahumada |first8=Juan Carlos |last9=Grzybowski |first9=Bartosz A. |title=On-Nanoparticle Gating Units Render an Ordinary Catalyst Substrate- and Site-Selective |journal=Journal of the American Chemical Society |date=3 February 2021 |volume=143 |issue=4 |pages=1807–1815 |doi=10.1021/jacs.0c09408 |pmid=33471520 |bibcode=2021JAChS.143.1807K |s2cid=231666073 }} A manganese single-atom nanozyme was developed for tumor therapy.{{cite journal |last1=Zhu |first1=Yang |last2=Wang |first2=Wenyu |last3=Cheng |first3=Junjie |last4=Qu |first4=Yunteng |last5=Dai |first5=Yi |last6=Liu |first6=Manman |last7=Yu |first7=Jianing |last8=Wang |first8=Chengming |last9=Wang |first9=Huijuan |last10=Wang |first10=Sicong |last11=Zhao |first11=Chao |last12=Wu |first12=Yuen |last13=Liu |first13=Yangzhong |title=Stimuli-Responsive Manganese Single-Atom Nanozyme for Tumor Therapy via Integrated Cascade Reactions |journal=Angewandte Chemie International Edition |date=19 April 2021 |volume=60 |issue=17 |pages=9480–9488 |doi=10.1002/anie.202017152 |pmid=33543825 |s2cid=231817944 }} A pH-responsive oxidase-like graphitic nanozyme was developed for selective killing of Helicobacter pylori.{{cite journal |last1=Zhang |first1=Lufeng |last2=Zhang |first2=Liang |last3=Deng |first3=Hui |last4=Li |first4=Huan |last5=Tang |first5=Wentao |last6=Guan |first6=Luyao |last7=Qiu |first7=Ye |last8=Donovan |first8=Michael J. |last9=Chen |first9=Zhuo |last10=Tan |first10=Weihong |title=In vivo activation of pH-responsive oxidase-like graphitic nanozymes for selective killing of Helicobacter pylori |journal=Nature Communications |date=31 March 2021 |volume=12 |issue=1 |pages=2002 |doi=10.1038/s41467-021-22286-x |pmid=33790299 |pmc=8012368 }} An engineered FeN3P-centred single-atom nanozyme was developed.{{cite journal |last1=Ji |first1=Shufang |last2=Jiang |first2=Bing |last3=Hao |first3=Haigang |last4=Chen |first4=Yuanjun |last5=Dong |first5=Juncai |last6=Mao |first6=Yu |last7=Zhang |first7=Zedong |last8=Gao |first8=Rui |last9=Chen |first9=Wenxing |last10=Zhang |first10=Ruofei |last11=Liang |first11=Qian |last12=Li |first12=Haijing |last13=Liu |first13=Shuhu |last14=Wang |first14=Yu |last15=Zhang |first15=Qinghua |last16=Gu |first16=Lin |last17=Duan |first17=Demin |last18=Liang |first18=Minmin |last19=Wang |first19=Dingsheng |last20=Yan |first20=Xiyun |last21=Li |first21=Yadong |title=Matching the kinetics of natural enzymes with a single-atom iron nanozyme |journal=Nature Catalysis |date=May 2021 |volume=4 |issue=5 |pages=407–417 |doi=10.1038/s41929-021-00609-x |s2cid=233876554 }} Peroxidase- and catalase-like activities of gold nanozymes were modulated.{{cite journal |last1=Chen |first1=Yao |last2=Shen |first2=Xiaomei |last3=Carmona |first3=Unai |last4=Yang |first4=Fan |last5=Gao |first5=Xingfa |last6=Knez |first6=Mato |last7=Zhang |first7=Lianbing |last8=Qin |first8=Yong |title=Control of Stepwise Hg 2+ Reduction on Gold to Selectively Tune its Peroxidase and Catalase-Like Activities and the Mechanism |journal=Advanced Materials Interfaces |date=June 2021 |volume=8 |issue=11 |pages=2100086 |doi=10.1002/admi.202100086 |s2cid=236606846 }} Graphdiyne–cerium oxide nanozymes were developed for radiotherapy of esophageal cancer.{{cite journal |last1=Zhou |first1=Xuantong |last2=You |first2=Min |last3=Wang |first3=Fuhui |last4=Wang |first4=Zhenzhen |last5=Gao |first5=Xingfa |last6=Jing |first6=Chao |last7=Liu |first7=Jiaming |last8=Guo |first8=Mengyu |last9=Li |first9=Jiayang |last10=Luo |first10=Aiping |last11=Liu |first11=Huibiao |last12=Liu |first12=Zhihua |last13=Chen |first13=Chunying |title=Multifunctional Graphdiyne–Cerium Oxide Nanozymes Facilitate MicroRNA Delivery and Attenuate Tumor Hypoxia for Highly Efficient Radiotherapy of Esophageal Cancer |journal=Advanced Materials |date=June 2021 |volume=33 |issue=24 |pages=2100556 |doi=10.1002/adma.202100556 |pmid=33949734 |bibcode=2021AdM....3300556Z |s2cid=233742755 }} Defect engineering was used to develop nanozyme for tumor therapy.{{cite journal |last1=Yu |first1=Bin |last2=Wang |first2=Wei |last3=Sun |first3=Wenbo |last4=Jiang |first4=Chunhuan |last5=Lu |first5=Lehui |title=Defect Engineering Enables Synergistic Action of Enzyme-Mimicking Active Centers for High-Efficiency Tumor Therapy |journal=Journal of the American Chemical Society |date=16 June 2021 |volume=143 |issue=23 |pages=8855–8865 |doi=10.1021/jacs.1c03510 |pmid=34086444 |bibcode=2021JAChS.143.8855Y |s2cid=235348273 }} A book entitled Nanozymes for Environmental Engineering was published.{{cite book |doi=10.1007/978-3-030-68230-9 |title=Nanozymes for Environmental Engineering |series=Environmental Chemistry for a Sustainable World |year=2021 |volume=63 |isbn=978-3-030-68229-3 |s2cid=235326551 }} A palladium single-atom nanozyme was developed for tumor therapy.{{cite journal |last1=Du |first1=Fangxue |last2=Liu |first2=Luchang |last3=Wu |first3=Zihe |last4=Zhao |first4=Zhenyang |last5=Geng |first5=Wei |last6=Zhu |first6=Bihui |last7=Ma |first7=Tian |last8=Xiang |first8=Xi |last9=Ma |first9=Lang |last10=Cheng |first10=Chong |last11=Qiu |first11=Li |title=Pd-Single-Atom Coordinated Biocatalysts for Chem-/Sono-/Photo-Trimodal Tumor Therapies |journal=Advanced Materials |date=July 2021 |volume=33 |issue=29 |pages=2101095 |doi=10.1002/adma.202101095 |pmid=34096109 |bibcode=2021AdM....3301095D |s2cid=235361149 }} A horseradish peroxidase–like nanozyme was developed for tumor therapy.{{cite journal |last1=Yang |first1=Bowen |last2=Yao |first2=Heliang |last3=Tian |first3=Han |last4=Yu |first4=Zhiguo |last5=Guo |first5=Yuedong |last6=Wang |first6=Yuemei |last7=Yang |first7=Jiacai |last8=Chen |first8=Chang |last9=Shi |first9=Jianlin |title=Intratumoral synthesis of nano-metalchelate for tumor catalytic therapy by ligand field-enhanced coordination |journal=Nature Communications |date=7 June 2021 |volume=12 |issue=1 |pages=3393 |doi=10.1038/s41467-021-23710-y |pmid=34099712 |pmc=8184762 |bibcode=2021NatCo..12.3393Y }} The mechanism of a GOx-like nanozyme was reported.{{cite journal |last1=Chen |first1=Jinxing |last2=Ma |first2=Qian |last3=Li |first3=Minghua |last4=Chao |first4=Daiyong |last5=Huang |first5=Liang |last6=Wu |first6=Weiwei |last7=Fang |first7=Youxing |last8=Dong |first8=Shaojun |title=Glucose-oxidase like catalytic mechanism of noble metal nanozymes |journal=Nature Communications |date=7 June 2021 |volume=12 |issue=1 |pages=3375 |doi=10.1038/s41467-021-23737-1 |pmid=34099730 |pmc=8184917 |bibcode=2021NatCo..12.3375C }} A review on nanozymes was published.{{cite journal |last1=Zhang |first1=Ruofei |last2=Yan |first2=Xiyun |last3=Fan |first3=Kelong |title=Nanozymes Inspired by Natural Enzymes |journal=Accounts of Materials Research |date=23 July 2021 |volume=2 |issue=7 |pages=534–547 |doi=10.1021/accountsmr.1c00074 |doi-access=free }} A mechanism study on nanonuclease-like nanozyme was reported.{{cite journal |last1=Pecina |first1=Adam |last2=Rosa-Gastaldo |first2=Daniele |last3=Riccardi |first3=Laura |last4=Franco-Ulloa |first4=Sebastian |last5=Milan |first5=Emil |last6=Scrimin |first6=Paolo |last7=Mancin |first7=Fabrizio |last8=De Vivo |first8=Marco |title=On the Metal-Aided Catalytic Mechanism for Phosphodiester Bond Cleavage Performed by Nanozymes |journal=ACS Catalysis |date=16 July 2021 |volume=11 |issue=14 |pages=8736–8748 |doi=10.1021/acscatal.1c01215 |pmid=34476110 |pmc=8397296 }} A perspective on nanozyme definition was published.{{cite journal |title=Nanozymes: A clear definition with fuzzy edges |journal=Nano Today |date=1 October 2021 |volume=40 |pages=101269 |doi=10.1016/j.nantod.2021.101269 |last1=Wei |first1=Hui |last2=Gao |first2=Lizeng |last3=Fan |first3=Kelong |last4=Liu |first4=Juewen |last5=He |first5=Jiuyang |last6=Qu |first6=Xiaogang |last7=Dong |first7=Shaojun |last8=Wang |first8=Erkang |last9=Yan |first9=Xiyun }} Aptananozymes were developed.{{cite journal |last1=Ouyang |first1=Yu |last2=Biniuri |first2=Yonatan |last3=Fadeev |first3=Michael |last4=Zhang |first4=Pu |last5=Carmieli |first5=Raanan |last6=Vázquez-González |first6=Margarita |last7=Willner |first7=Itamar |title=Aptamer-Modified Cu 2+ -Functionalized C-Dots: Versatile Means to Improve Nanozyme Activities-'Aptananozymes' |journal=Journal of the American Chemical Society |date=4 August 2021 |volume=143 |issue=30 |pages=11510–11519 |doi=10.1021/jacs.1c03939 |pmid=34286967 |pmc=8856595 |s2cid=236159523 }} Ceria nanozyme loaded microneedles helped hair regrowth.{{cite journal |last1=Yuan |first1=Anran |last2=Xia |first2=Fan |last3=Bian |first3=Qiong |last4=Wu |first4=Haibin |last5=Gu |first5=Yueting |last6=Wang |first6=Tao |last7=Wang |first7=Ruxuan |last8=Huang |first8=Lingling |last9=Huang |first9=Qiaoling |last10=Rao |first10=Yuefeng |last11=Ling |first11=Daishun |last12=Li |first12=Fangyuan |last13=Gao |first13=Jianqing |title=Ceria Nanozyme-Integrated Microneedles Reshape the Perifollicular Microenvironment for Androgenetic Alopecia Treatment |journal=ACS Nano |date=24 August 2021 |volume=15 |issue=8 |pages=13759–13769 |doi=10.1021/acsnano.1c05272|issn=1936-0851 |pmid=34279913 |s2cid=236142266 }} A catalase-like platinum nanozyme was used for small extracellular vesicles analysis.{{cite journal |last1=Yang |first1=Jingjing |last2=Pan |first2=Bei |last3=Zeng |first3=Fei |last4=He |first4=Bangshun |last5=Gao |first5=Yanfeng |last6=Liu |first6=Xinli |last7=Song |first7=Yujun |title=Magnetic Colloid Antibodies Accelerate Small Extracellular Vesicles Isolation for Point-of-Care Diagnostics |journal=Nano Letters |date=10 March 2021 |volume=21 |issue=5 |pages=2001–2009 |doi=10.1021/acs.nanolett.0c04476 |pmid=33591201 |bibcode=2021NanoL..21.2001Y |s2cid=231935616 }} A book on Nanozymes: Advances and Applications was published by CRC Press.{{cite book |last1=Gunasekaran |first1=Sundaram |title=Nanozymes: Advances and Applications |date=2021 |publisher=CRC Press |isbn=978-1-000-47436-7 }}{{pn|date=February 2024}} A review on nanozyme catalytic turnover was published.{{cite journal |last1=Zandieh |first1=Mohamad |last2=Liu |first2=Juewen |title=Nanozyme Catalytic Turnover and Self-Limited Reactions |journal=ACS Nano |date=26 October 2021 |volume=15 |issue=10 |pages=15645–15655 |doi=10.1021/acsnano.1c07520 |pmid=34623130 |s2cid=238476223 }} A nanozyme was developed for ratiometric molecular imaging.{{cite journal |last1=Teng |first1=Lili |last2=Han |first2=Xiaoyu |last3=Liu |first3=Yongchao |last4=Lu |first4=Chang |last5=Yin |first5=Baoli |last6=Huan |first6=Shuangyan |last7=Yin |first7=Xia |last8=Zhang |first8=Xiao-Bing |last9=Song |first9=Guosheng |title=Smart Nanozyme Platform with Activity-Correlated Ratiometric Molecular Imaging for Predicting Therapeutic Effects |journal=Angewandte Chemie International Edition |date=6 December 2021 |volume=60 |issue=50 |pages=26142–26150 |doi=10.1002/anie.202110427 |pmid=34554633 |s2cid=237607859 }} A Fe3O4/Ag/Bi2MoO6 photoactivatable nanozyme was developed for cancer therapy.{{cite journal |last1=Cao |first1=Changyu |last2=Zou |first2=Hai |last3=Yang |first3=Nan |last4=Li |first4=Hui |last5=Cai |first5=Yu |last6=Song |first6=Xuejiao |last7=Shao |first7=Jinjun |last8=Chen |first8=Peng |last9=Mou |first9=Xiaozhou |last10=Wang |first10=Wenjun |last11=Dong |first11=Xiaochen |title=Fe 3 O 4 /Ag/Bi 2 MoO 6 Photoactivatable Nanozyme for Self-Replenishing and Sustainable Cascaded Nanocatalytic Cancer Therapy |journal=Advanced Materials |date=19 October 2021 |volume=33 |issue=52 |pages=2106996 |doi=10.1002/adma.202106996 |pmid=34626026 |bibcode=2021AdM....3306996C |s2cid=238529101 }} Co/C as an NADH oxidase mimic was reported.{{cite journal |last1=Chen |first1=Jinxing |last2=Zheng |first2=Xiliang |last3=Zhang |first3=Jiaxin |last4=Ma |first4=Qian |last5=Zhao |first5=Zhiwei |last6=Huang |first6=Liang |last7=Wu |first7=Weiwei |last8=Wang |first8=Ying |last9=Wang |first9=Jin |last10=Dong |first10=Shaojun |title=Bubble-templated synthesis of nanocatalyst Co/C as NADH oxidase mimic |journal=National Science Review |date=11 October 2021 |volume=9 |issue=3 |pages=nwab186 |doi=10.1093/nsr/nwab186 |pmid=35261777 |pmc=8897313 }} An iron oxide nanozyme was used to target biofilms causing tooth decay.{{cite journal |last1=Liu |first1=Yuan |last2=Huang |first2=Yue |last3=Kim |first3=Dongyeop |last4=Ren |first4=Zhi |last5=Oh |first5=Min Jun |last6=Cormode |first6=David P. |last7=Hara |first7=Anderson T. |last8=Zero |first8=Domenick T. |last9=Koo |first9=Hyun |title=Ferumoxytol Nanoparticles Target Biofilms Causing Tooth Decay in the Human Mouth |journal=Nano Letters |date=24 November 2021 |volume=21 |issue=22 |pages=9442–9449 |doi=10.1021/acs.nanolett.1c02702 |pmid=34694125 |pmc=9308480 |bibcode=2021NanoL..21.9442L |s2cid=239767560 }} A new strategy for high-performance nanozymes was developed.{{cite journal |last1=Chen |first1=Yuanjun |last2=Wang |first2=Peixia |last3=Hao |first3=Haigang |last4=Hong |first4=Juanji |last5=Li |first5=Haijing |last6=Ji |first6=Shufang |last7=Li |first7=Ang |last8=Gao |first8=Rui |last9=Dong |first9=Juncai |last10=Han |first10=Xiaodong |last11=Liang |first11=Minmin |last12=Wang |first12=Dingsheng |last13=Li |first13=Yadong |title=Thermal Atomization of Platinum Nanoparticles into Single Atoms: An Effective Strategy for Engineering High-Performance Nanozymes |journal=Journal of the American Chemical Society |date=10 November 2021 |volume=143 |issue=44 |pages=18643–18651 |doi=10.1021/jacs.1c08581 |pmid=34726407 |bibcode=2021JAChS.14318643C |s2cid=240421572 }} A high-throughput computational screening strategy was developed to discover SOD-like nanozymes.{{cite journal |last1=Wang |first1=Zhenzhen |last2=Wu |first2=Jiangjiexing |last3=Zheng |first3=Jia-Jia |last4=Shen |first4=Xiaomei |last5=Yan |first5=Liang |last6=Wei |first6=Hui |last7=Gao |first7=Xingfa |last8=Zhao |first8=Yuliang |title=Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening |journal=Nature Communications |date=25 November 2021 |volume=12 |issue=1 |pages=6866 |doi=10.1038/s41467-021-27194-8 |pmid=34824234 |pmc=8616946 |bibcode=2021NatCo..12.6866W |s2cid=244660088 }} A review paper entitled "Nanozyme-Enabled Analytical Chemistry" was published in Analytical Chemistry.{{Cite journal |doi = 10.1021/acs.analchem.1c04492|title = Nanozyme-Enabled Analytical Chemistry|year = 2022|last1 = Li|first1 = Sirong|last2 = Zhang|first2 = Yihong|last3 = Wang|first3 = Quan|last4 = Lin|first4 = Anqi|last5 = Wei|first5 = Hui|journal = Analytical Chemistry|volume = 94|issue = 1|pages = 312–323|pmid = 34870985|s2cid = 244932009}} A nanozyme-based therapy for gout was reported.{{Cite journal |doi = 10.1021/acs.nanolett.1c04454|title = Self-Cascade Uricase/Catalase Mimics Alleviate Acute Gout|year = 2022|last1 = Lin|first1 = Anqi|last2 = Sun|first2 = Ziying|last3 = Xu|first3 = Xingquan|last4 = Zhao|first4 = Sheng|last5 = Li|first5 = Jiawei|last6 = Sun|first6 = Heng|last7 = Wang|first7 = Quan|last8 = Jiang|first8 = Qing|last9 = Wei|first9 = Hui|last10 = Shi|first10 = Dongquan|journal = Nano Letters|volume = 22|issue = 1|pages = 508–516|pmid = 34968071|bibcode = 2022NanoL..22..508L|s2cid = 245593934}} A data-informed strategy for discovery of nanozymes was reported.{{cite journal |last1=Li |first1=Sirong |last2=Zhou |first2=Zijun |last3=Tie |first3=Zuoxiu |last4=Wang |first4=Bing |last5=Ye |first5=Meng |last6=Du |first6=Lei |last7=Cui |first7=Ran |last8=Liu |first8=Wei |last9=Wan |first9=Cuihong |last10=Liu |first10=Quanyi |last11=Zhao |first11=Sheng |last12=Wang |first12=Quan |last13=Zhang |first13=Yihong |last14=Zhang |first14=Shuo |last15=Zhang |first15=Huigang |last16=Du |first16=Yan |last17=Wei |first17=Hui |title=Data-informed discovery of hydrolytic nanozymes |journal=Nature Communications |date=9 December 2020 |volume=13 |issue=1 |pages=2020.12.08.416305 |doi=10.1038/s41467-022-28344-2 |pmid=35149676 |pmc=8837776 |bibcode=2022NatCo..13..827L }}{{cite journal |last1=Li |first1=Sirong |last2=Zhou |first2=Zijun |last3=Tie |first3=Zuoxiu |last4=Wang |first4=Bing |last5=Ye |first5=Meng |last6=Du |first6=Lei |last7=Cui |first7=Ran |last8=Liu |first8=Wei |last9=Wan |first9=Cuihong |last10=Liu |first10=Quanyi |last11=Zhao |first11=Sheng |last12=Wang |first12=Quan |last13=Zhang |first13=Yihong |last14=Zhang |first14=Shuo |last15=Zhang |first15=Huigang |last16=Du |first16=Yan |last17=Wei |first17=Hui |title=Data-informed discovery of hydrolytic nanozymes |journal=Nature Communications |date=11 February 2022 |volume=13 |issue=1 |pages=827 |doi=10.1038/s41467-022-28344-2 |pmid=35149676 |pmc=8837776 |bibcode=2022NatCo..13..827L }} Prussian blue nanozyme was used to alleviates neurodegeneration.{{cite journal |last1=Ma |first1=Xinxin |last2=Hao |first2=Junnian |last3=Wu |first3=Jianrong |last4=Li |first4=Yuehua |last5=Cai |first5=Xiaojun |last6=Zheng |first6=Yuanyi |title=Prussian Blue Nanozyme as a Pyroptosis Inhibitor Alleviates Neurodegeneration |journal=Advanced Materials |date=March 2022 |volume=34 |issue=15 |pages=2106723 |doi=10.1002/adma.202106723 |pmid=35143076 |bibcode=2022AdM....3406723M |s2cid=246701158 }} A dual element single-atom nanozyme was developed.{{cite journal |last1=Ma |first1=Chong-Bo |last2=Xu |first2=Yaping |last3=Wu |first3=Lixin |last4=Wang |first4=Quan |last5=Zheng |first5=Jia-Jia |last6=Ren |first6=Guoxi |last7=Wang |first7=Xiaoyu |last8=Gao |first8=Xingfa |last9=Zhou |first9=Ming |last10=Wang |first10=Ming |last11=Wei |first11=Hui |title=Guided Synthesis of a Mo/Zn Dual Single-Atom Nanozyme with Synergistic Effect and Peroxidase-like Activity |journal=Angewandte Chemie |date=3 March 2022 |volume=134 |issue=25 |pages=e202116170 |doi=10.1002/ange.202116170 |pmid=35238141 |bibcode=2022AngCh.13416170M |s2cid=247274050 }} A valence-engineered method was developed to design antioxidant banozyme for biomedical applications.{{Cite journal | doi=10.1002/anie.202201101 | title=A Valence-Engineered Self-Cascading Antioxidant Nanozyme for the Therapy of Inflammatory Bowel Disease | year=2022 | last1=Wang | first1=Quan | last2=Cheng | first2=Chaoqun | last3=Zhao | first3=Sheng | last4=Liu | first4=Quanyi | last5=Zhang | first5=Yihong | last6=Liu | first6=Wanling | last7=Zhao | first7=Xiaozhi | last8=Zhang | first8=He | last9=Pu | first9=Jun | last10=Zhang | first10=Shuo | last11=Zhang | first11=Huigang | last12=Du | first12=Yan | last13=Wei | first13=Hui | journal=Angewandte Chemie International Edition | volume=61 | issue=27 | pages=anie.202201101 | pmid=35452169 | s2cid=248323783 }} Combined with small interfering RNA, ceria nanozyme was used for synergistic treatment of neurodegenerative diseases.{{cite journal | doi=10.1002/adma.202105711 | title=Self-Catalytic Small Interfering RNA Nanocarriers for Synergistic Treatment of Neurodegenerative Diseases | year=2022 | last1=Ji | first1=Weihong | last2=Li | first2=Yan | last3=Peng | first3=Huan | last4=Zhao | first4=Ruichen | last5=Shen | first5=Jie | last6=Wu | first6=Yanyue | last7=Wang | first7=Jianze | last8=Hao | first8=Qiulian | last9=Lu | first9=Zhiguo | last10=Yang | first10=Jun | last11=Zhang | first11=Xin | journal=Advanced Materials | volume=34 | issue=1 | pages=e2105711 | pmid=34601753 | bibcode=2022AdM....3405711J | s2cid=238257684 }} A universal assay for catalase-like nanozymes was reported.{{cite journal | doi=10.1021/acs.analchem.2c00804 | title=A Dopamine-Enabled Universal Assay for Catalase and Catalase-Like Nanozymes | year=2022 | last1=Lin | first1=Anqi | last2=Liu | first2=Quanyi | last3=Zhang | first3=Yihong | last4=Wang | first4=Quan | last5=Li | first5=Sirong | last6=Zhu | first6=Bijun | last7=Miao | first7=Leiying | last8=Du | first8=Yan | last9=Zhao | first9=Sheng | last10=Wei | first10=Hui | journal=Analytical Chemistry | volume=94 | issue=30 | pages=10636–10642 | pmid=35758679 | s2cid=250071990 }} A nanozyme catalyzed CRISPR assay was developed.{{cite journal | doi=10.1038/s41565-022-01179-0 | title=Nanozyme-catalysed CRISPR assay for preamplification-free detection of non-coding RNAs | year=2022 | last1=Broto | first1=Marta | last2=Kaminski | first2=Michael M. | last3=Adrianus | first3=Christopher | last4=Kim | first4=Nayoung | last5=Greensmith | first5=Robert | last6=Dissanayake-Perera | first6=Schan | last7=Schubert | first7=Alexander J. | last8=Tan | first8=Xiao | last9=Kim | first9=Hyemin | last10=Dighe | first10=Anand S. | last11=Collins | first11=James J. | last12=Stevens | first12=Molly M. | journal=Nature Nanotechnology | volume=17 | issue=10 | pages=1120–1126 | pmid=35927321 | pmc=7616987 | bibcode=2022NatNa..17.1120B | hdl=10044/1/97651 | s2cid=251323478 | hdl-access=free }} A nanozyme-based tumor-specific photo-enhanced catalytic therapy was developed.{{cite journal | doi=10.1002/ange.202115939 | title=Intercalation-Activated Layered MoO 3 Nanobelts as Biodegradable Nanozymes for Tumor-Specific Photo-Enhanced Catalytic Therapy | year=2022 | last1=Zhou | first1=Zhan | last2=Wang | first2=Yanlong | last3=Peng | first3=Feng | last4=Meng | first4=Fanqi | last5=Zha | first5=Jiajia | last6=Ma | first6=Lu | last7=Du | first7=Yonghua | last8=Peng | first8=Na | last9=Ma | first9=Lufang | last10=Zhang | first10=Qinghua | last11=Gu | first11=Lin | last12=Yin | first12=Wenyan | last13=Gu | first13=Zhanjun | last14=Tan | first14=Chaoliang | journal=Angewandte Chemie | volume=134 | issue=16 | bibcode=2022AngCh.13415939Z | osti=1844569 | s2cid=246318463 }} Single-atom nanozymes for brain trauma therapy were reported.{{cite journal | doi=10.1038/s41467-022-32411-z | title=Single-atom nanozymes catalytically surpassing naturally occurring enzymes as sustained stitching for brain trauma | year=2022 | last1=Zhang | first1=Shaofang | last2=Li | first2=Yonghui | last3=Sun | first3=Si | last4=Liu | first4=Ling | last5=Mu | first5=Xiaoyu | last6=Liu | first6=Shuhu | last7=Jiao | first7=Menglu | last8=Chen | first8=Xinzhu | last9=Chen | first9=Ke | last10=Ma | first10=Huizhen | last11=Li | first11=Tuo | last12=Liu | first12=Xiaoyu | last13=Wang | first13=Hao | last14=Zhang | first14=Jianning | last15=Yang | first15=Jiang | last16=Zhang | first16=Xiao-Dong | journal=Nature Communications | volume=13 | issue=1 | page=4744 | pmid=35961961 | pmc=9374753 | bibcode=2022NatCo..13.4744Z | s2cid=251539856 }} An edge engineering strategy was developed to fabriacte single atom nanozymes.{{cite journal | doi=10.1002/adma.202205324 | title=Edge-site Engineering of Defective Fe-N 4 nanozymes with Boosted Catalase-like Performance for Retinal Vasculopathies | journal=Advanced Materials | date=11 August 2022 | last1=Zhang | first1=Ruofei | last2=Xue | first2=Bai | last3=Tao | first3=Yanhong | last4=Zhao | first4=Hanqing | last5=Zhang | first5=Zixia | last6=Wang | first6=Xiaonan | last7=Zhou | first7=Xinyao | last8=Jiang | first8=Bing | last9=Yang | first9=Zhenglin | last10=Yan | first10=Xiyun | last11=Fan | first11=Kelong | volume=34 | issue=39 | pages=e2205324 | pmid=35953446 | bibcode=2022AdM....3405324Z | s2cid=251516329 }} A single atom nanozyme was developed to modulate tumor microenvironment for therapy.{{cite journal | doi=10.1002/anie.202204502 | title=Tumor-Microenvironment-Responsive Cascade Reactions by a Cobalt-Single-Atom Nanozyme for Synergistic Nanocatalytic Chemotherapy | date=16 August 2022 | pages=anie.202204502 | last1=Cai | first1=Shuangfei | last2=Liu | first2=Jiaming | last3=Ding | first3=Jianwei | last4=Fu | first4=Zhao | last5=Li | first5=Haolin | last6=Xiong | first6=Youlin | last7=Lian | first7=Zheng | last8=Yang | first8=Rong | last9=Chen | first9=Chunying | journal=Angewandte Chemie International Edition | volume=61 | issue=48 | pmid=35972794 | s2cid=251592137 }} A new mechanism for peroxidase-like Fe3O4 was proposed.{{cite journal | doi=10.1038/s41467-022-33098-y | title=Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions | journal=Nature Communications | date=12 September 2022 | volume=13 | issue=1 | page=5365 | last1=Dong | first1=Haijiao | last2=Du | first2=Wei | last3=Dong | first3=Jian | last4=Che | first4=Renchao | last5=Kong | first5=Fei | last6=Cheng | first6=Wenlong | last7=Ma | first7=Ming | last8=Gu | first8=Ning | last9=Zhang | first9=Yu | pmid=36097172 | pmc=9467987 | bibcode=2022NatCo..13.5365D }} A plant virus cleaving nanozyme was reported.{{cite journal | doi=10.1038/s41929-022-00823-1 | title=Site-selective proteolytic cleavage of plant viruses by photoactive chiral nanoparticles | journal=Nature Catalysis | date=August 2022 | volume=5 | issue=8 | pages=694–707 | last1=Gao | first1=Rui | last2=Xu | first2=Liguang | last3=Sun | first3=Maozhong | last4=Xu | first4=Manlin | last5=Hao | first5=Changlong | last6=Guo | first6=Xiao | last7=Colombari | first7=Felippe Mariano | last8=Zheng | first8=Xin | last9=Král | first9=Petr | last10=De Moura | first10=André F. | last11=Xu | first11=Chuanlai | last12=Yang | first12=Jinguang | last13=Kotov | first13=Nicholas A. | last14=Kuang | first14=Hua | s2cid=251672747 }} Nanozymes is selected as one of the IUPAC Top Ten Emerging Technologies in Chemistry 2022.{{Cite web|url=https://iupac.org/iupac-2022-top-ten/|title=IUPAC Announces the 2022 Top Ten Emerging Technologies in Chemistry|first=Fabienne|last=Meyers|date=October 17, 2022|website=IUPAC | International Union of Pure and Applied Chemistry}} A book entitled "Nanozymes: Design, Synthesis, and Applications" was published by ACS.{{cite book |doi=10.1021/bk-2022-1422 |title=Nanozymes: Design, Synthesis, and Applications |series=ACS Symposium Series |date=2022 |volume=1422 |isbn=978-0-8412-9751-7 |s2cid=253034535 }} Nanozymes were used to remove and degrade microplastics.{{cite journal |last1=Zandieh |first1=Mohamad |last2=Liu |first2=Juewen |title=Removal and Degradation of Microplastics Using the Magnetic and Nanozyme Activities of Bare Iron Oxide Nanoaggregates |journal=Angewandte Chemie International Edition |date=21 November 2022 |volume=61 |issue=47 |pages=e202212013 |doi=10.1002/anie.202212013 |pmid=36195554 |s2cid=252714734 }} A cold-adapted nanozyme was reported.{{cite journal |last1=Chen |first1=Yao |last2=Tian |first2=Qing |last3=Wang |first3=Haoyu |last4=Ma |first4=Ruonan |last5=Han |first5=Ruiting |last6=Wang |first6=Yu |last7=Ge |first7=Huibin |last8=Ren |first8=Yujing |last9=Yang |first9=Rong |last10=Yang |first10=Huimin |last11=Chen |first11=Yinjuan |last12=Duan |first12=Xuezhi |last13=Zhang |first13=Lianbing |last14=Gao |first14=Jie |last15=Gao |first15=Lizeng |last16=Yan |first16=Xiyun |last17=Qin |first17=Yong |title=A Manganese-Based Metal–Organic Framework as a Cold-Adapted Nanozyme |journal=Advanced Materials |date=14 November 2022 |volume=36 |issue=10 |pages=e2206421 |doi=10.1002/adma.202206421 |pmid=36329676 |s2cid=253301961 }} A MOF-818 nanozyme with antioxidase-mimicking activities was used to treat diabetic chronic wounds.{{cite journal | doi=10.1021/jacs.2c09663 | title=Specific Nanodrug for Diabetic Chronic Wounds Based on Antioxidase-Mimicking MOF-818 Nanozymes | year=2022 | last1=Chao | first1=Daiyong | last2=Dong | first2=Qing | last3=Yu | first3=Zhixuan | last4=Qi | first4=Desheng | last5=Li | first5=Minghua | last6=Xu | first6=Lili | last7=Liu | first7=Ling | last8=Fang | first8=Youxing | last9=Dong | first9=Shaojun | journal=Journal of the American Chemical Society | volume=144 | issue=51 | pages=23438–23447 | pmid=36512736 | bibcode=2022JAChS.14423438C | s2cid=254661703 }} Cu single-atom nanozymes were developed for catalytic tumor-specific therapy.{{cite journal | doi=10.1021/jacs.2c13597 | title=Coordination-Driven Self-Assembly Strategy-Activated Cu Single-Atom Nanozymes for Catalytic Tumor-Specific Therapy | year=2023 | last1=Zhou | first1=Jie | last2=Xu | first2=Deting | last3=Tian | first3=Gan | last4=He | first4=Qian | last5=Zhang | first5=Xiao | last6=Liao | first6=Jing | last7=Mei | first7=Linqiang | last8=Chen | first8=Lei | last9=Gao | first9=Lizeng | last10=Zhao | first10=Lina | last11=Yang | first11=Guoping | last12=Yin | first12=Wenyan | last13=Nie | first13=Guangjun | last14=Zhao | first14=Yuliang | journal=Journal of the American Chemical Society | volume=145 | issue=7 | pages=4279–4293 | pmid=36744911 | bibcode=2023JAChS.145.4279Z | s2cid=256614276 }} Machine learning was employed to search for nanozymes.{{cite journal | doi=10.1002/adma.202201736 | title=Prediction and Design of Nanozymes using Explainable Machine Learning | year=2022 | last1=Wei | first1=Yonghua | last2=Wu | first2=Jin | last3=Wu | first3=Yixuan | last4=Liu | first4=Hongjiang | last5=Meng | first5=Fanqiang | last6=Liu | first6=Qiqi | last7=Midgley | first7=Adam C. | last8=Zhang | first8=Xiangyun | last9=Qi | first9=Tianyi | last10=Kang | first10=Helong | last11=Chen | first11=Rui | last12=Kong | first12=Deling | last13=Zhuang | first13=Jie | last14=Yan | first14=Xiyun | last15=Huang | first15=Xinglu | journal=Advanced Materials | volume=34 | issue=27 | pages=e2201736 | pmid=35487518 | bibcode=2022AdM....3401736W | s2cid=248451764 }} Enzyme-like meso-bacroporous carbon sphere was developed.{{cite journal | doi=10.1021/jacs.2c12977 | title=Tunable Hierarchically Structured Meso-Macroporous Carbon Spheres from a Solvent-Mediated Polymerization-Induced Self-Assembly | year=2023 | last1=Liu | first1=Zhiqing | last2=Li | first2=Wei | last3=Sheng | first3=Wenbo | last4=Liu | first4=Shiyu | last5=Li | first5=Rui | last6=Li | first6=Qian | last7=Li | first7=Danya | last8=Yu | first8=Shui | last9=Li | first9=Meng | last10=Li | first10=Yongsheng | last11=Jia | first11=Xin | journal=Journal of the American Chemical Society | volume=145 | issue=9 | pages=5310–5319 | pmid=36758639 | bibcode=2023JAChS.145.5310L | s2cid=256739119 }} A combination of DNAzyme and nanozyme was reported.{{cite journal | doi=10.1021/jacs.2c12367 | title=Amalgamation of DNAzymes and Nanozymes in a Coronazyme | year=2023 | last1=Zuo | first1=Li | last2=Ren | first2=Kehao | last3=Guo | first3=Xianming | last4=Pokhrel | first4=Pravin | last5=Pokhrel | first5=Bishal | last6=Hossain | first6=Mohammad Akter | last7=Chen | first7=Zhao-Xu | last8=Mao | first8=Hanbin | last9=Shen | first9=Hao | journal=Journal of the American Chemical Society | volume=145 | issue=10 | pages=5750–5758 | pmid=36795472 | pmc=10325850 | bibcode=2023JAChS.145.5750Z | s2cid=256899407 }} A peroxidase-like photoexcited Ru single-atom nanozyme was reported.{{cite journal | doi=10.1073/pnas.2220315120 | title=Photoexcited Ru single-atomic sites for efficient biomimetic redox catalysis | date=2023 | last1=Xu | first1=Weiqing | last2=Zhong | first2=Hong | last3=Wu | first3=Yu | last4=Qin | first4=Ying | last5=Jiao | first5=Lei | last6=Sha | first6=Meng | last7=Su | first7=Rina | last8=Tang | first8=Yinjun | last9=Zheng | first9=Lirong | last10=Hu | first10=Liuyong | last11=Zhang | first11=Shipeng | last12=Beckman | first12=Scott P. | last13=Gu | first13=Wenling | last14=Yang | first14=Yong | last15=Guo | first15=Shaojun | last16=Zhu | first16=Chengzhou | journal=Proceedings of the National Academy of Sciences | volume=120 | issue=21 | pages=e2220315120 | doi-access=free | pmid=37186847 | pmc=10214184 | bibcode=2023PNAS..12020315X }} A probiotic nanozyme hydrogel for Candida vaginitis therapy was developed.{{cite journal | doi=10.1126/sciadv.adg0949 | title=A probiotic nanozyme hydrogel regulates vaginal microenvironment for Candida vaginitis therapy | date=2023 | last1=Wei | first1=Gen | last2=Liu | first2=Quanyi | last3=Wang | first3=Xiaoyu | last4=Zhou | first4=Zijun | last5=Zhao | first5=Xiaozhi | last6=Zhou | first6=Wanqing | last7=Liu | first7=Wanling | last8=Zhang | first8=Yihong | last9=Liu | first9=Shujie | last10=Zhu | first10=Chenxin | last11=Wei | first11=Hui | journal=Science Advances | volume=9 | issue=20 | pages=eadg0949 | pmid=37196095 | pmc=10191424 | bibcode=2023SciA....9G.949W | s2cid=258763150 }} A method to determine the maximum velocity of a peroxidase-like nanozyme was proposed.{{cite journal | doi=10.1021/acs.analchem.3c01830 | title=Determination of the Maximum Velocity of a Peroxidase-like Nanozyme | date=2023 | last1=Wang | first1=Yuting | last2=Li | first2=Tong | last3=Wei | first3=Hui | journal=Analytical Chemistry | volume=95 | issue=26 | pages=10105–10109 | pmid=37341651 | s2cid=259209589 }} Antisenescence nanozymes for atherosclerosis therapy were reported.{{cite journal | doi=10.1002/anie.202304465 | title=Integrated Cascade Nanozymes with Antisenescence Activities for Atherosclerosis Therapy | date=2023 | last1=Liu | first1=Wanling | last2=Zhang | first2=Yihong | last3=Wei | first3=Gen | last4=Zhang | first4=Minxuan | last5=Li | first5=Tong | last6=Liu | first6=Quanyi | last7=Zhou | first7=Zijun | last8=Du | first8=Yan | last9=Wei | first9=Hui | journal=Angewandte Chemie International Edition | volume=62 | issue=33 | pages=e202304465 | pmid=37338457 | s2cid=259199886 }} A book entitled 'Biomedical Nanozymes: From Diagnostics to Therapeutics' was published by Springer.{{cite book |last1=Wei |first1=Hui |last2=Li |first2=Genxi |last3=Li |first3=Jinghong |title=Biomedical Nanozymes: From Diagnostics to Therapeutics |date=2023 |publisher=Springer Nature |isbn=978-981-99-3338-9 }}{{pn|date=February 2024}} 2023 Dalton Division Horizon Prize was awarded to High-Performance Nanozyme Designer.{{cite web | url=https://www.rsc.org/prizes-funding/prizes/2023-winners/high-performance-nanozyme-designer/ | title=High-Performance Nanozyme Designer - 2023 Dalton Horizon Prize winner }} Nanozyme-cosmetic contact lenses were developed.{{cite journal | doi=10.1002/adma.202305555 | title=Nanozyme-Cosmetic Contact Lenses for Ocular Surface Diseases Prevention | date=2023 | last1=Liu | first1=Quanyi | last2=Zhao | first2=Sheng | last3=Zhang | first3=Yihong | last4=Fang | first4=Qi | last5=Liu | first5=Wanling | last6=Wu | first6=Rong | last7=Wei | first7=Gen | last8=Wei | first8=Hui | last9=Du | first9=Yan | journal=Advanced Materials | volume=35 | issue=44 | pages=e2305555 | pmid=37584617 | bibcode=2023AdM....3505555L | s2cid=260925225 }} Biogenic ferritins act as natural nanozymes were reported.{{cite journal | doi=10.1038/s41467-023-44463-w | title=A natural biogenic nanozyme for scavenging superoxide radicals | date=2024 | last1=Ma | first1=Long | last2=Zheng | first2=Jia-Jia | last3=Zhou | first3=Ning | last4=Zhang | first4=Ruofei | last5=Fang | first5=Long | last6=Yang | first6=Yili | last7=Gao | first7=Xingfa | last8=Chen | first8=Chunying | last9=Yan | first9=Xiyun | last10=Fan | first10=Kelong | journal=Nature Communications | volume=15 | issue=1 | page=233 | pmid=38172125 | pmc=10764798 | bibcode=2024NatCo..15..233M }} An integrated computational and experimental framework for inverse screening of nanozymes was developed.{{cite journal | doi=10.1021/acsnano.3c09128 | title=Integrated Computational and Experimental Framework for Inverse Screening of Candidate Antibacterial Nanomedicine | date=2024 | last1=Zheng | first1=Jia-Jia | last2=Wang | first2=Xiaoyu | last3=Li | first3=Zeqi | last4=Shen | first4=Xiaomei | last5=Wei | first5=Gen | last6=Xia | first6=Pufeihong | last7=Zhou | first7=Yi-Ge | last8=Wei | first8=Hui | last9=Gao | first9=Xingfa | journal=ACS Nano | volume=18 | issue=2 | pages=1531–1542 | pmid=38164912 | s2cid=266724881 }} A diatomic iron nanozyme was reported.{{cite journal | doi=10.1038/s41467-023-43176-4 | title=Diatomic iron nanozyme with lipoxidase-like activity for efficient inactivation of enveloped virus | date=2023 | last1=Li | first1=Beibei | last2=Ma | first2=Ruonan | last3=Chen | first3=Lei | last4=Zhou | first4=Caiyu | last5=Zhang | first5=Yu-Xiao | last6=Wang | first6=Xiaonan | last7=Huang | first7=Helai | last8=Hu | first8=Qikun | last9=Zheng | first9=Xiaobo | last10=Yang | first10=Jiarui | last11=Shao | first11=Mengjuan | last12=Hao | first12=Pengfei | last13=Wu | first13=Yanfen | last14=Che | first14=Yizhen | last15=Li | first15=Chang | last16=Qin | first16=Tao | last17=Gao | first17=Lizeng | last18=Niu | first18=Zhiqiang | last19=Li | first19=Yadong | journal=Nature Communications | volume=14 | issue=1 | page=7312 | pmid=37951992 | pmc=10640610 | bibcode=2023NatCo..14.7312L }} Mechanism of carbon dot-based SOD-like nanozyme was studied.{{cite journal | doi=10.1038/s41467-023-35828-2 | title=Deciphering the catalytic mechanism of superoxide dismutase activity of carbon dot nanozyme | date=2023 | last1=Gao | first1=Wenhui | last2=He | first2=Jiuyang | last3=Chen | first3=Lei | last4=Meng | first4=Xiangqin | last5=Ma | first5=Yana | last6=Cheng | first6=Liangliang | last7=Tu | first7=Kangsheng | last8=Gao | first8=Xingfa | last9=Liu | first9=Cui | last10=Zhang | first10=Mingzhen | last11=Fan | first11=Kelong | last12=Pang | first12=Dai-Wen | last13=Yan | first13=Xiyun | journal=Nature Communications | volume=14 | issue=1 | page=160 | pmid=36631476 | pmc=9834297 | bibcode=2023NatCo..14..160G }} A hybrid ceria nanozyme was developed for arthritis therapy.{{cite journal | doi=10.1038/s41565-023-01523-y | title=Ceria-vesicle nanohybrid therapeutic for modulation of innate and adaptive immunity in a collagen-induced arthritis model | date=2023 | last1=Koo | first1=Sagang | last2=Sohn | first2=Hee Su | last3=Kim | first3=Tae Hee | last4=Yang | first4=Siyeon | last5=Jang | first5=Se Youn | last6=Ye | first6=Seongryeol | last7=Choi | first7=Boomin | last8=Kim | first8=Soo Hyeon | last9=Park | first9=Kyoung Sun | last10=Shin | first10=Hyun Mu | last11=Park | first11=Ok Kyu | last12=Kim | first12=Cheesue | last13=Kang | first13=Mikyung | last14=Soh | first14=Min | last15=Yoo | first15=Jin | last16=Kim | first16=Dokyoon | last17=Lee | first17=Nohyun | last18=Kim | first18=Byung-Soo | last19=Jung | first19=Youngmee | last20=Hyeon | first20=Taeghwan | journal=Nature Nanotechnology | volume=18 | issue=12 | pages=1502–1514 | pmid=37884660 | bibcode=2023NatNa..18.1502K | s2cid=264517619 }} A chiral nanozyme was reported for Parkinson's disease.{{cite journal | doi=10.1038/s41467-023-43870-3 | title=Chiral metal-organic frameworks incorporating nanozymes as neuroinflammation inhibitors for managing Parkinson's disease | date=2023 | last1=Jiang | first1=Wei | last2=Li | first2=Qing | last3=Zhang | first3=Ruofei | last4=Li | first4=Jianru | last5=Lin | first5=Qianyu | last6=Li | first6=Jingyun | last7=Zhou | first7=Xinyao | last8=Yan | first8=Xiyun | last9=Fan | first9=Kelong | journal=Nature Communications | volume=14 | issue=1 | page=8137 | pmid=38065945 | pmc=10709450 | bibcode=2023NatCo..14.8137J }} A dimensionality-engineered single-atom nanozyme was reported.{{cite journal | doi=10.1021/jacs.3c05162 | title=Dimensionality Engineering of Single-Atom Nanozyme for Efficient Peroxidase-Mimicking | date=2023 | last1=Li | first1=Guangming | last2=Liu | first2=Hao | last3=Hu | first3=Tianding | last4=Pu | first4=Fang | last5=Ren | first5=Jinsong | last6=Qu | first6=Xiaogang | journal=Journal of the American Chemical Society | volume=145 | issue=30 | pages=16835–16842 | pmid=37487021 | bibcode=2023JAChS.14516835L | s2cid=260133028 }} A liposome-base nanozyme was developed to treat infected diabetic wounds.{{cite journal |last1=Wei |first1=Tingting |last2=Pan |first2=Tiezheng |last3=Peng |first3=Xiuping |last4=Zhang |first4=Mengjuan |last5=Guo |first5=Ru |last6=Guo |first6=Yuqing |last7=Mei |first7=Xiaohan |last8=Zhang |first8=Yuan |last9=Qi |first9=Ji |last10=Dong |first10=Fang |last11=Han |first11=Meijuan |last12=Kong |first12=Fandi |last13=Zou |first13=Lina |last14=Li |first14=Dan |last15=Zhi |first15=Dengke |last16=Wu |first16=Weihui |last17=Kong |first17=Deling |last18=Zhang |first18=Song |last19=Zhang |first19=Chunqiu |title=Janus liposozyme for the modulation of redox and immune homeostasis in infected diabetic wounds |journal=Nature Nanotechnology |date=13 May 2024 |volume=19 |issue=8 |pages=1178–1189 |doi=10.1038/s41565-024-01660-y |pmid=38740936 |bibcode=2024NatNa..19.1178W }} A single-site iron nanozyme was developed for alcohol detoxification.{{cite journal |last1=Su |first1=Jiaqi |last2=Wang |first2=Pengjie |last3=Zhou |first3=Wei |last4=Peydayesh |first4=Mohammad |last5=Zhou |first5=Jiangtao |last6=Jin |first6=Tonghui |last7=Donat |first7=Felix |last8=Jin |first8=Cuiyuan |last9=Xia |first9=Lu |last10=Wang |first10=Kaiwen |last11=Ren |first11=Fazheng |last12=Van der Meeren |first12=Paul |last13=García de Arquer |first13=F. Pelayo |last14=Mezzenga |first14=Raffaele |title=Single-site iron-anchored amyloid hydrogels as catalytic platforms for alcohol detoxification |journal=Nature Nanotechnology |date=13 May 2024 |volume=19 |issue=8 |pages=1168–1177 |doi=10.1038/s41565-024-01657-7 |pmid=38740933 |doi-access=free |pmc=11329373 |bibcode=2024NatNa..19.1168S }} A Pt nanozyme was developed to treat gouty arthritis.{{cite journal |last1=Xu |first1=Jingxin |last2=Wu |first2=Mingjun |last3=Yang |first3=Jie |last4=Zhao |first4=Dezhang |last5=He |first5=Dan |last6=Liu |first6=Yingju |last7=Yan |first7=Xiong |last8=Liu |first8=Yuying |last9=Pu |first9=Daojun |last10=Tan |first10=Qunyou |last11=Zhang |first11=Ling |last12=Zhang |first12=Jingqing |title=Multimodal smart systems reprogramme macrophages and remove urate to treat gouty arthritis |journal=Nature Nanotechnology |date=17 July 2024 |volume=19 |issue=10 |pages=1544–1557 |doi=10.1038/s41565-024-01715-0 |pmid=39020102 |bibcode=2024NatNa..19.1544X }} Two nature reviews on nanozymes were published, focusing on nanohealthcare and in vivo applications.{{cite journal |last1=Zhang |first1=Yihong |last2=Wei |first2=Gen |last3=Liu |first3=Wanling |last4=Li |first4=Tong |last5=Wang |first5=Yuting |last6=Zhou |first6=Min |last7=Liu |first7=Yufeng |last8=Wang |first8=Xiaoyu |last9=Wei |first9=Hui |title=Nanozymes for nanohealthcare |journal=Nature Reviews Methods Primers |date=30 May 2024 |volume=4 |issue=1 |doi=10.1038/s43586-024-00315-5 }}{{cite journal |last1=Zhang |first1=Ruofei |last2=Jiang |first2=Bing |last3=Fan |first3=Kelong |last4=Gao |first4=Lizeng |last5=Yan |first5=Xiyun |title=Designing nanozymes for in vivo applications |journal=Nature Reviews Bioengineering |date=18 July 2024 |volume=2 |issue=10 |pages=849–868 |doi=10.1038/s44222-024-00205-1 }} Combination of nanozyme and probiotics for IBD therapy.{{cite journal |last1=Cao |first1=Fangfang |last2=Jin |first2=Lulu |last3=Gao |first3=Yong |last4=Ding |first4=Yuan |last5=Wen |first5=Hongyang |last6=Qian |first6=Zhefeng |last7=Zhang |first7=Chenyin |last8=Hong |first8=Liangjie |last9=Yang |first9=Huang |last10=Zhang |first10=Jiaojiao |last11=Tong |first11=Zongrui |last12=Wang |first12=Weilin |last13=Chen |first13=Xiaoyuan |last14=Mao |first14=Zhengwei |title=Artificial-enzymes-armed Bifidobacterium longum probiotics for alleviating intestinal inflammation and microbiota dysbiosis |journal=Nature Nanotechnology |date=June 2023 |volume=18 |issue=6 |pages=617–627 |doi=10.1038/s41565-023-01346-x |pmid=36973397 |bibcode=2023NatNa..18..617C }} An artificial metabzyme for tumour-cell-specific metabolic therapy was reported.{{cite journal |last1=Hu |first1=Xi |last2=Zhang |first2=Bo |last3=Zhang |first3=Miao |last4=Liang |first4=Wenshi |last5=Hong |first5=Bangzhen |last6=Ma |first6=Zhiyuan |last7=Sheng |first7=Jianpeng |last8=Liu |first8=Tianqi |last9=Yang |first9=Shengfei |last10=Liang |first10=Zeyu |last11=Zhang |first11=Jichao |last12=Fan |first12=Chunhai |last13=Li |first13=Fangyuan |last14=Ling |first14=Daishun |title=An artificial metabzyme for tumour-cell-specific metabolic therapy |journal=Nature Nanotechnology |date=5 August 2024 |volume=19 |issue=11 |pages=1712–1722 |doi=10.1038/s41565-024-01733-y |pmid=39103450 |bibcode=2024NatNa..19.1712H }} Inhalable nanozyme for viral pneumonia therapy.{{cite journal | url=https://www.nature.com/articles/s41563-024-02041-5 | doi=10.1038/s41563-024-02041-5 | title=Inhalable nanocatalytic therapeutics for viral pneumonia | date=2024 | last1=Peng | first1=Wenchang | last2=Tai | first2=Wanbo | last3=Li | first3=Bowen | last4=Wang | first4=Hua | last5=Wang | first5=Tao | last6=Guo | first6=Shuyue | last7=Zhang | first7=Xu | last8=Dong | first8=Pengyuan | last9=Tian | first9=Chongyu | last10=Feng | first10=Shengyong | last11=Yang | first11=Long | last12=Cheng | first12=Gong | last13=Zheng | first13=Bin | journal=Nature Materials | pages=1–12 | pmid=39592721 }} A strategy to modulate the microenvironmental pHs of nanozymes was developed and the modulated nanozymes were used for analysis including chiral analysis.{{cite journal | doi=10.1038/s41467-024-55163-4 | title=Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities | date=2024 | last1=Li | first1=Tong | last2=Wang | first2=Xiaoyu | last3=Wang | first3=Yuting | last4=Zhang | first4=Yihong | last5=Li | first5=Sirong | last6=Liu | first6=Wanling | last7=Liu | first7=Shujie | last8=Liu | first8=Yufeng | last9=Xing | first9=Hang | last10=Otake | first10=Ken-Ichi | last11=Kitagawa | first11=Susumu | last12=Wu | first12=Jiangjiexing | last13=Dong | first13=Hao | last14=Wei | first14=Hui | journal=Nature Communications | volume=15 | issue=1 | page=10861 | pmid=39738107 | pmc=11686145 }} Certain nanozymes have the potential for treating ischemic stroke and traumatic brain injury due to their ability to mitigate the harmful effects of excessive free radical production, oxidative brain damage, inflammation, and blood-brain barrier disruption.{{cite journal | doi=10.1021/acsnano.4c03425 | title=Nanozymes: Potential Therapies for Reactive Oxygen Species Overproduction and Inflammation in Ischemic Stroke and Traumatic Brain Injury | date=2024 | last1=Yang | first1=Yunfan | last2=Li | first2=Zixiang | last3=Fan | first3=Xiaochong | last4=Jiang | first4=Chao | last5=Wang | first5=Junmin | last6=Rastegar-Kashkooli | first6=Yousef | last7=Wang | first7=Tom | last8=Wang | first8=Junyang | last9=Wang | first9=Menglu | last10=Cheng | first10=Nanan | last11=Yuan | first11=Xiqian | last12=Chen | first12=Xuemei | last13=Jiang | first13=Bing | last14=Wang | first14=Jian |journal=ACS Nano | volume=18 | issue=26 | pages=16450–16467 | pmid=38897929 }}

See also

References

{{reflist|30em}}

{{DEFAULTSORT:Enzyme (artificial)}}

Category:Enzymes

Category:Synthetic biology

Category:Nanotechnology