baker percentage#Dough hydration
{{Short description|Mathematical notation in cooking}}
Baker's percentage is a notation method indicating the proportion of an ingredient relative to the flour used in a recipe when making breads, cakes, muffins, and other baked goods.{{cite book |url=https://books.google.com/books?id=XqKF7PqV02cC&pg=PA9 |author=Paula I. Figoni |title=How Baking Works: Exploring the Fundamentals of Baking Science |publisher=Wiley |location=New York |year=2010 |pages=9–11 |quote=Baker's percentage—sometimes called formula percentage or indicated as "on flour weight basis"—is different from the percentages commonly taught in math classes. |isbn=978-0-470-39267-6 |access-date=2010-12-06}}{{cite book |author1=Griffin, Mary Annarose |author2=Gisslen, Wayne |title=Professional baking |edition=4th |publisher=John Wiley |location=New York |year=2005 |page=10 |isbn=0-471-46427-9 |url=https://books.google.com/books?id=YrQZi41PqKEC&pg=PA10 |access-date=2011-01-01}}{{cite book |url=https://books.google.com/books?id=b-iwjIb2RxwC&pg=PA32 |author=Corriher, Shirley |title=BakeWise: The Hows and Whys of Successful Baking with Over 200 Magnificent Recipes |publisher=Scribner |location=New York |year=2008 |page=32 |isbn=978-1-4165-6078-4 |access-date=2010-12-09}}{{cite book |url=https://books.google.com/books?id=43sA1NhzCWsC&pg=SA16-PA6 |author=Hui, Yiu H. |title=Handbook of food science, technology, and engineering |publisher=Taylor & Francis |location=Washington, DC |year=2006 |page=16-6 |isbn=0-8493-9849-5 |access-date=2010-12-09}} It is also referred to as baker's math,{{cite book |url=https://books.google.com/books?id=riDsZRlmmRAC&pg=PA19 |author1=Laura Halpin Rinsky |author2=Glenn Rinsky |title=The pastry chef's companion: a comprehensive resource guide for the baking and pastry professional |publisher=John Wiley & Sons |location=Chichester |year=2009 |page=19 |isbn=978-0-470-00955-0 |access-date=2010-12-09}}{{cite book |url=https://books.google.com/books?id=kF5uI5uWjEMC&pg=PA31 |author=Daniel T. DiMuzio |title=Bread Baking: An Artisan's Perspective |publisher=Wiley |location=New York |year=2009 |page=31 |isbn=978-0-470-13882-3 |access-date=2010-12-11}} and may be indicated by a phrase such as based on flour weight.{{cite book |url=https://books.google.com/books?id=f3Ua43ujjUoC&pg=475 |author=Cauvain, Stanley P. |title=Bread making: improving quality |publisher=CRC Press |location=Boca Raton |year=2003 |page=475 |quote=Generally the taste of yeast itself is not detectable in bread unless the amount of yeast used is greater than 2.5% based on the weight of flour. |isbn=1-85573-553-9 |access-date=2010-12-08}} It is sometimes called formula percentage, a phrase that refers to the sum of a set of baker's percentages.{{#tag:ref|There is some ambiguity regarding the use of the phrase "formula percentage" in the literature. From the published date of 2004{{cite book |editor1=J. Scott Smith |editor2=Yiu H. Hui |title=Food processing: principles and applications |publisher=Blackwell Pub |location=Cambridge, MA |year=2004 |page=178 |quote=Formula—term used instead of "recipe," by the baking industry; the weight of each ingredient is determined based on the weight of flour at 100%.
Formula percent—term used by the baking industry to describe the amount of each ingredient by weight for a "recipe" or formula compared to the weight of all ingredients. |isbn=0-8138-1942-3 |url=https://books.google.com/books?id=QDpi_6VnhegC&pg=PA178 |access-date=2010-12-29}} to the date 2007,{{cite book |editor=Yiu H. Hui |title=Handbook of food products manufacturing |publisher=Wiley |location=New York |year=2007 |page=302 |quote=True formula percent (true percent): Term used by the baking industry to describe the amount of each ingredient by weight for a "recipe" or formula compared with the total weight of all ingredients. |isbn=978-0-470-12524-3 |url=https://books.google.com/books?id=mnh6aoI8iF8C&pg=PA302 |access-date=2010-12-29}} Hui's definitions have changed slightly. In 2004 "formula percent" was defined by "total weight of all ingredients"; however by the latter date's usage, the preference was to use the prefix "true" in the phrase "True formula percent (true percent)" when referring to "total weight of all ingredients." In 2005, Ramaswamy & Marcotte used the phrase "typical formula" in reference to a "baker's %" series of ingredients, then drew the semantic and mathematic distinctions that "actual percentage" was one based upon "total mass", which they labeled "% flour", "% water", etc. In 2010, Figoni said that "baker's percentage" was "sometimes called formula percentage...." In 1939, the phrase formula percentage was said to commonly refer to the sum of the particular percentages that would later be called bakers' percentages.|group=note}} Baker's percentage expresses a ratio in percentages of each ingredient's weight to the total flour weight:{{cite book |author1=Michele Marcotte |author2=Hosahalli Ramaswamy |title=Food Processing: Principles and Applications |publisher=CRC |location=Boca Raton |year=2005 |pages=14–15 |isbn=1-58716-008-0 |url=https://books.google.com/books?id=6Cox1IpjqU0C&pg=PA15 |access-date=2010-12-25}}{{cite book |author=Gisslen, Wayne |title=Professional cooking |edition=Sixth |publisher=John Wiley |location=New York |year=2007 |page=893 |isbn=978-0-471-66376-8 |url=https://books.google.com/books?id=i12rMZhl4t0C&pg=PA893 |access-date=2010-12-25}}{{cite book |author=Gisslen, Wayne |title=Professional baking |publisher=John Wiley |location=New York |year=2009 |page=24 |isbn=978-0-471-78349-7}}
:
For example, in a recipe that calls for 10 pounds of flour and 5 pounds of water, the corresponding baker's percentages are 100% for the flour and 50% for the water. Because these percentages are stated with respect to the weight of flour rather than with respect to the weight of all ingredients, the sum of these percentages always exceeds 100%.
Flour-based recipes are more precisely conceived as baker's percentages, and more accurately measured using weight instead of volume. The uncertainty in using volume measurements follows from the fact that flour settles in storage and therefore does not have a constant density.{{cite book |author=Stanley P. Cauvain |editor1=Stanley P. Cauvain |editor2=Linda S. Young |others=BakeTran, High Wycombe, Buckinghamshire, UK |title=The ICC Handbook of Cereals, Flour, Dough & Product Testing: Methods and Applications |publisher=DEStech Publications, Inc |location=Lancaster, Pennsylvania |year=2009 |page=69 |quote=Using Cereal Testing at Mill Intake" > "The Bulk Density of Grain (Hectolitre Mass, Bushel Mass, Test Weight, Specific Weight) |isbn=978-1-932078-99-2 |url=https://books.google.com/books?id=F5Yu_eT7-4MC&pg=PA69 |access-date=2010-12-26}}{{cite book |author=Wihlfahrt, Julius Emil |others=THE FLEISCHMANN CO. |title=A treatise on flour, yeast, fermentation and baking, together with recipes for bread and cakes |year=1913 |orig-year=1905 |page=25 |url=https://books.google.com/books?id=m-cqAAAAYAAJ&pg=PA25 |access-date=2010-01-22}}
Baker's percentages
A yeast-dough formula could call for the following list of ingredients, presented as a series of baker's percentages:
:
class=wikitable style="text-align:center;" | |
align=left | flour | 100% |
align=left | water | 60% |
align=left | yeast | 1% |
align=left | salt | 2% |
align=left | oil | 1% |
=Conversions=
There are several common conversions that are used with baker's percentages. Converting baker's percentages to ingredient weights is one. Converting known ingredient weights to baker percentages is another. Conversion to true percentages, or based on total weight, is helpful to calculate unknown ingredient weights from a desired total or formula weight.
==Using baker's percentages==
To derive the ingredient weights when any weight of flour Wf is chosen:Derived algebraically from Gisslen's formula.
:
\text{Weight}_\text{ingredient} &= \frac{\text{Weight}_\text{flour} \times \text{Baker's percentage}_\text{ingredient}}{100\%} \\
&= \text{Weight}_\text{flour} \times \text{Baker's percentage}_\text{ingredient}
\end{align}
File:Waga_elektroniczna.jpg for weighing ingredients.]]
:
class=wikitable style="text-align:center;" | |||
align=left colspan=2 | Baker's percentage || colspan=2 |weights Wf denotes a flour weight. In method 1 the percentage was divided by 100%. Method 2 works well when using a calculator. When using a spreadsheet, formatting the cell as percentage versus number automatically handles the per-cent portion of the calculation. | |||
---|---|---|---|
align=left | ingredient || % || method 1 || method 2 | |||
align=left | flour | 100% | align=left | Wf * 1.00 | align=left | Wf * 100% |
align=left | water | 35% | align=left | Wf * 0.35 | align=left | Wf * 35% |
align=left | milk | 35% | align=left | Wf * 0.35 | align=left | Wf * 35% |
align=left | fresh yeast | 4% | align=left | Wf * 0.04 | align=left | Wf * 4% |
align=left | salt | 1.8% | align=left | Wf * 0.018 | align=left | Wf * 1.8% |
In the example below, 2 lb and 10 kg of flour weights have been calculated. Depending on the desired weight unit, only one of the following four weight columns is used:
:
class=wikitable style="text-align:center;" | |||||
colspan=2 rowspan=2 | Baker's percentage || colspan=4 | weights | |||||
---|---|---|---|---|---|
colspan=2 | 2 lb ||colspan=2 | 10 kg | |||||
align=left | ingredient || % || lb || oz || kg || g | |||||
align=left | flour | 100% | 2 | 32 | 10 | 10000 |
align=left | water | 35% | 0.7 | 11.2 | 3.5 | 3500 |
align=left | milk | 35% | 0.7 | 11.2 | 3.5 | 3500 |
align=left | fresh yeast | 4% | 0.08 | 1.28 | 0.4 | 400 |
align=left | salt | 1.8% | 0.036 | 0.576 | 0.18 | 180 |
==Creating baker's percentages==
The baker has determined how much a recipe's ingredients weigh, and uses uniform decimal weight units. All ingredient weights are divided by the flour weight to obtain a ratio, then the ratio is multiplied by 100% to yield the baker's percentage for that ingredient:
:
class=wikitable style="text-align:center;" | ||||
align=left | ingredient || weight || {{frac|ingredient mass|flour mass}} || colspan=2 | × 100% | ||||
---|---|---|---|---|
align=left | flour | 10 kg | 10 | = | 100% |
align=left | water | 3.5 kg | 3.5 | = | 35% |
align=left | milk | 3.5 kg | 3.5 | = | 35% |
align=left | fresh yeast | 0.4 kg | 0.4 | = | 4% |
align=left | salt | 0.18 kg | 0.18 | = | 1.8% |
Due to the canceling of uniform weight units, the baker may employ any desired system of measurement (metric or avoirdupois,{{cite book |url=https://books.google.com/books?id=Yz0mF7pXZ38C&pg=PA11 |author1=Rees, Nicole |author2=Amendola, Joseph |title=The baker's manual: 150 master formulas for baking |publisher=J. Wiley |location=London |year=2003 |page=11 |isbn=0-471-40525-6 |access-date=2010-12-06}} etc.) when using a baker's percentage to determine an ingredient's weight. Generally, the baker finds it easiest to use the system of measurement that is present on the available tools.
==Formula percentage and total mass==
:
class=wikitable style="text-align:center;" | ||
Ingredient True percentage values have been rounded and are approximate. || baker's % || true % | ||
---|---|---|
align=left | flour | style="color:green;"| 100% | style="color:maroon;"| 56.88% |
align=left | water | 35% | style="color:maroon;"| 19.91% |
align=left | milk | 35% | style="color:maroon;"| 19.91% |
align=left | fresh yeast | 4% | style="color:maroon;"| 2.28% |
align=left | salt | 1.8% | style="color:maroon;"| 1.02% |
align=right | Total ||style="color:red;"| 175.8% ||style="color:green;"| 100% |
The total or sum of the baker's percentages is called the formula percentage. The sum of the ingredient masses is called the formula mass (or formula "weight"). Here are some interesting calculations:
- The flour's mass times the formula percentage equals the formula mass:{{cite book |editor=Quartermaster Corps |title=Army baker |year=1939 |publisher=U.S. Government Printing Office |location=Washington |id=Training Manual No. 2100-151 |pages=38–41 |url=http://babel.hathitrust.org/cgi/pt?view=image;size=75;id=coo.31924105503084;page=root;seq=41;num=39 |access-date=2012-02-07 |quote=The sum of the percentages of ingredients used in any dough is commonly referred to as the formula percentage (168 percent in example in b above). The sum of the weights of ingredients used in a dough is commonly referred to as formula weight (462 pounds in example in c above).}}
:
\text{Formula mass} &= \text{Mass}_\text{flour} \times \text{Formula percentage} \\
\frac{\text{Formula mass}}{\text{Formula percentage}} &= \text{Mass}_\text{flour}
\end{align}
- An ingredient's mass is obtained by multiplying the formula mass by that ingredient's true percentage; because an ingredient's true percentage is that ingredient's baker's percentage divided by the formula percentage expressed as parts per hundred, an ingredient's mass can also be obtained by multiplying the formula mass by the ingredient's baker's percentage and then dividing the result by the formula percentage:
::
\text{Mass}_\text{ingredient} &= \text{Formula mass} \times \text{True percentage}_\text{ingredient} \\
\text{True percentage}_\text{ingredient} &= \frac{\text{Baker's percentage}_\text{ingredient}}{\text{Formula percentage}} \times 100\% \\
\text{Mass}_\text{ingredient} &= \text{Formula mass} \times \frac{\text{Baker's percentage}_\text{ingredient}}{\text{Formula percentage}} \\
&= \frac{\text{Formula mass} \times \text{Baker's percentage}_\text{ingredient}}{\text{Formula percentage}}
\end{align}
:Thus, it is not necessary to calculate each ingredient's true percentage in order to calculate each ingredient's mass, provided the formula mass and the baker's percentages are known.
- Ingredients' masses can also be obtained by first calculating the mass of the flour then using baker's percentages to calculate remaining ingredient masses:
::
\text{Mass}_\text{ingredient} &= \frac{\text{Formula mass}}{\text{Formula percentage}} \times \text{Baker's percentage}_\text{ingredient} \\
&= \text{Mass}_\text{flour} \times \text{Baker's percentage}_\text{ingredient}
\end{align}
- The two methods of calculating the mass of an ingredient are equivalent:
::
= Weights and densities=
The use of customary U.S. units can sometimes be awkward and the metric system makes these conversions simpler. In the metric system, there are only a small number of basic measures of relevance to cooking: the gram (g) for weight, the liter (L) for volume, the meter (m) for length, and degrees Celsius (°C) for temperature; multiples and sub-multiples are indicated by prefixes, two commonly used metric cooking prefixes are milli- (m-) and kilo- (k-).{{cite web |url=http://www.jsward.com/cooking/cooking-metric.shtml |title=The Metric Kitchen |access-date=2010-11-30 |archive-date=2010-12-08 |archive-url=https://web.archive.org/web/20101208061508/http://www.jsward.com/cooking/cooking-metric.shtml |url-status=live }} Intra-metric conversions involve moving the decimal point.{{cite web|url=http://teacherweb.ftl.pinecrest.edu/piersog/Regular/Worksheets/WS-Metric%20conversion.doc |title=Intra-metric Conversions |format=Doc |access-date=2011-02-15 |url-status=dead |archive-url=https://web.archive.org/web/20060916205441/http://teacherweb.ftl.pinecrest.edu/piersog/Regular/Worksheets/WS-Metric%20conversion.doc |archive-date=2006-09-16 }}
Common avoirdupois and metric weight equivalences:{{citation |title=Google Calculator |url=https://www.google.com/webhp?hl=en&tab=ww#hl=en&q=1+kg+equals+how+many+lbs |access-date=2010-12-18 |archive-date=2019-12-14 |archive-url=https://web.archive.org/web/20191214161345/https://www.google.com/webhp?hl=en#hl=en&q=1+kg+equals+how+many+lbs |url-status=live }}
:1 pound (lb) = 16 ounces (oz)
:1 kilogram (kg) = 1,000 grams (g) = 2.20462262 lb
:1 lb = 453.59237 g = 0.45359237 kg
:1 oz = 28.3495231 g.
In four different English-language countries of recipe and measuring-utensil markets, approximate cup volumes range from 236.59 to 284.1 milliliters (mL). Adaptation of volumetric recipes can be made with density approximations:
{{Main|Cup (unit)#Dry measure}}
:
class=wikitable |
style="background: #D8D8D8;" colspan=8|Volume to mass conversions for some common cooking ingredients |
---|
rowspan=2|ingredient
!rowspan=2|density This is not a numerical coincidence, but comes from the original definition of the kilogram as the mass of one litre of water, and the imperial gallon as the volume occupied by ten avoirdupois pounds of water. The slight difference is due to water at {{convert|4|°C}} being used for the kilogram, and at {{convert|62|°F}} for the imperial gallon. The U.S. fluid ounce is slightly larger. :1 g/mL ≈ 1.043 av oz/U.S. fl oz !colspan=2|metric cup !colspan=2|imperial cup !colspan=2|U.S. customary cup |
g
!oz !g !oz !g !oz |
water1 g/mL is a good rough guide for water-based liquids such as milk (the [http://hypertextbook.com/facts/2002/AliciaNoelleJones.shtml density of milk] {{Webarchive|url=https://web.archive.org/web/20110805230348/http://hypertextbook.com/facts/2002/AliciaNoelleJones.shtml |date=2011-08-05 }} is about {{nowrap|1.03–1.04 g/mL}}).
|align=center|249–250 |align=center|8.8 |align=center|283–284 |align=center|10 |align=center|236–237 |
granulated sugar
|align=center|200 |align=center|7.0 |align=center|230 |align=center|8.0 |align=center|190 |align=center|6.7 |
wheat flour
|align=center|120–150 |align=center|4.4–5.3 |align=center|140–170 |align=center|5.0–6.0 |align=center|120–140 |align=center|4.2–5.0 |
table salt
|align=center|300 |align=center|10.6 |align=center|340 |align=center|12.0 |align=center|280 |align=center|10.0 |
Due to volume and density ambiguities, a different approach involves volumetrically measuring the ingredients, then using scales or balances of appropriate accuracy and error ranges to weigh them, and recording the results. With this method, occasionally an error or outlier of some kind occurs.
Drawbacks
Baker's percentages do not accurately reflect the impact of the amount of gluten-forming proteins in the flour on the final product and therefore may need to be adjusted from country to country, or even miller to miller, depending on definitions of terms like "bread flour" and actual protein content.{{cite web |url=http://www.kitchensavvy.com/journal/2004/12/q_bread_recipes.html |title=KitchenSavvy: Flour Power? |access-date=2010-12-09 |archive-date=2010-06-14 |archive-url=https://web.archive.org/web/20100614221631/http://www.kitchensavvy.com/journal/2004/12/q_bread_recipes.html |url-status=live }} Manipulation of known flour-protein levels can be calculated with a Pearson square.{{cite book |author1=Hosahalli Ramaswamy |author2=Amalendu Chakraverty |author3=Mujumdar, Arun S. |author4=Vijaya Raghavan |title=Handbook of postharvest technology: cereals, fruits, vegetables, tea, and spices |publisher=Marcel Dekker |location=New York, N.Y |year=2003 |page=263 |url=https://books.google.com/books?id=Y4N54Wn618YC&pg=PA263 |isbn=0-8247-0514-9 |access-date=2010-01-07}}{{cite book |author=Van Loon, Dirk |title=The family cow |publisher=Garden Way Pub |location=Charlotte, Vt |year=1976 |page=152 |isbn=0-88266-066-7 |url=https://books.google.com/books?id=j-efZMh9_WgC&pg=PA152 }}
In home baking, the amounts of ingredients such as salt or yeast expressed by mass may be too small to measure accurately on the scales used by most home cooks. For these ingredients, it may be easier to express quantities by volume, based on standard densities. For this reason, many breadmaking books that are targeted to home bakers provide both percentages and volumes for common batch sizes.
Besides the need for appropriate readability scales, a kitchen calculator is helpful when working directly from baker's percentages.
Advantages
Baker's percentages enable the user to:
- compare recipes more easily (i.e., which are drier, saltier, sweeter, etc.).
- spot a bad recipe, or predict its baked characteristics.
- alter or add a single-ingredient percentage without changing the other ingredients' percentages.
- measure uniformly an ingredient where the quantity per unit may vary (as with eggs).
- scale accurately and easily for different batch sizes.
Common formulations
Common formulations for bread{{cite book |url=https://books.google.com/books?id=dSarPnb4i6QC&pg=PA207 |author=Reinhart, Peter |title=Peter Reinhart's Artisan Breads Every Day |publisher=Ten Speed Press |location=Berkeley, Calif |year=2009 |pages=207–209 |isbn=978-1-58008-998-2 |access-date=2010-12-09}} include 100% flour, 60% water/liquid, 1% yeast, 2% salt and 1% oil, lard or butter.
Dough hydration
In a recipe, the baker's percentage for water is referred to as the "hydration"; it is indicative of the stickiness of the dough and the "crumb" of the bread. Lower hydration rates (e.g., 50–57%) are typical for bagels and pretzels, and medium hydration levels (58–65%) are typical for breads and rolls.{{cite web |url=http://www.stellaculinary.com/scs20 |title=SCS 020{{!}} Bread Classifications {{!}} Stella Culinary |access-date=2012-08-25 |archive-date=2023-01-08 |archive-url=https://web.archive.org/web/20230108183105/https://stellaculinary.com/scs20 |url-status=live }} Higher hydration levels are used to produce more and larger holes, as is common in artisan breads such as baguettes or ciabatta. Doughs are also often classified by the terms stiff, firm, soft, and slack.{{cite web |url=http://www.theartisan.net/bakers_percentage_revised_2001.htm |title=Bakers Percentages - Revised |access-date=2014-11-28 |archive-date=2014-12-03 |archive-url=https://web.archive.org/web/20141203103913/http://www.theartisan.net/bakers_percentage_revised_2001.htm |url-status=live }} Batters are more liquid doughs. Muffins are a type of drop batter while pancakes are a type of pour batter.
:
class=wikitable style="text-align:left;" | |
colspan=2 style="text-align:center;"| Doughs | |
---|---|
Very stiff | < 57% |
Stiff to firm | 57-65% |
Soft | 65-70% |
Soft to slack | 70-80% |
colspan=2 style="text-align:center;"| Batters Mathematically converted from liquid-to-dry volumetric ratios on quick bread. 1 cup water weighs 237 g, 1 cup all purpose flour, 125 g, rounding applied. It is worth noting that if the liquid is whole milk of 3.25% milkfat, which is somewhat common in pancake recipes, the actual water content or hydration is about 88% of that value per the USDA National Nutrient database, thus pancake hydrations may be as low as, or lower than, 167% or thereabouts (190% * 88%). | |
Drop | 95% |
Pour | 190% |
Notes
{{Reflist|group=note}}
References
{{Reflist|2}}
External links
- [https://web.archive.org/web/20100510203808/http://kitchensavvy.typepad.com/journal/2005/08/bakers_percenta.html Baker's percentage]
- [https://archive.today/20130122013705/http://www.eg-software.com/products/egsrecipenet/bakers.aspx?lang=1 Sample recipe]
- [https://www.youtube.com/watch?v=1tRn-PlXk-g Understanding The Baker's Percentage - Video] A video that explains in detail the baker's percentage, its benefits, and best uses.
- [https://bakerspercentage.com Baker's percentage calculator]
{{portalbar|Food}}
{{Bread}}