balanced prime

In number theory, a balanced prime is a prime number with equal-sized prime gaps above and below it, so that it is equal to the arithmetic mean of the nearest primes above and below. Or to put it algebraically, the nth prime number p_n is a balanced prime if

:p_n = {{p_{n - 1} + p_{n + 1}} \over 2}.

For example, 53 is the sixteenth prime; the fifteenth and seventeenth primes, 47 and 59, add up to 106, and half of that is 53; thus 53 is a balanced prime.

Examples

The first few balanced primes are

5, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511, 1747, 1753, 1907, 2287, 2417, 2677, 2903 {{OEIS|id=A006562}}.

Infinitude

{{unsolved|mathematics|Are there infinitely many balanced primes?}}

It is conjectured that there are infinitely many balanced primes.

Three consecutive primes in arithmetic progression is sometimes called a CPAP-3. A balanced prime is by definition the second prime in a CPAP-3. {{As of|2023}} the largest known CPAP-3 has 15004 decimal digits and was found by Serge Batalov. It is:[http://primerecords.dk/cpap.htm#k3 The Largest Known CPAP's]. Retrieved on 2023-01-06.

:p_n = 2494779036241 \times 2^{49800} + 7,\quad p_{n-1} = p_n-6,\quad p_{n+1} = p_n+6.

(The value of n, i.e. its position in the sequence of all primes, is not known.)

Generalization

The balanced primes may be generalized to the balanced primes of order n. A balanced prime of order n is a prime number that is equal to the arithmetic mean of the nearest n primes above and below. Algebraically, the kth prime number p_k is a balanced prime of order n if

:p_k = { \sum_{i=1}^n ({p_{k - i} + p_{k + i})} \over 2n}.

Thus, an ordinary balanced prime is a balanced prime of order 1. The sequences of balanced primes of orders 2, 3, and 4 are {{nowrap|A082077}}, {{nowrap|A082078}}, and {{nowrap|A082079}} in the OEIS respectively.

See also

  • Strong prime, a prime that is greater than the arithmetic mean of its two neighboring primes
  • Interprime, a composite number balanced between two prime neighbours

References