binary compounds of hydrogen

{{Short description|Chemical compounds containing only hydrogen and one other chemical element}}

Binary compounds of hydrogen are binary chemical compounds containing just hydrogen and one other chemical element. By convention all binary hydrogen compounds are called hydrides even when the hydrogen atom in it is not an anion.Concise Inorganic Chemistry J.D. LeeMain Group Chemistry, 2nd Edition, A. G. MasseyAdvanced Inorganic Chemistry F. Albert Cotton, Geoffrey WilkinsonInorganic chemistry, Catherine E. Housecroft, A. G. Sharpe These hydrogen compounds can be grouped into several types.

Overview

Binary hydrogen compounds in group 1 are the ionic hydrides (also called saline hydrides) wherein hydrogen is bound electrostatically. Because hydrogen is located somewhat centrally in an electronegative sense, it is necessary for the counterion to be exceptionally electropositive for the hydride to possibly be accurately described as truly behaving ionic. Therefore, this category of hydrides contains only a few members.

Hydrides in group 2 are polymeric covalent hydrides. In these, hydrogen forms bridging covalent bonds, usually possessing mediocre degrees of ionic character, which make them difficult to be accurately described as either covalent or ionic. The one exception is beryllium hydride, which has definitively covalent properties.

Hydrides in the transition metals and lanthanides are also typically polymeric covalent hydrides. However, they usually possess only weak degrees of ionic character. Usually, these hydrides rapidly decompose into their component elements at ambient conditions. The results consist of metallic matrices with dissolved, often stoichiometric or near so, concentrations of hydrogen, ranging from negligible to substantial. Such a solid can be thought of as a solid solution and is alternately termed a metallic- or interstitial hydride. These decomposed solids are identifiable by their ability to conduct electricity and their magnetic properties (the presence of hydrogen is coupled with the delocalisation of the valence electrons of the metal), and their lowered density compared to the metal. Both the saline hydrides and the polymeric covalent hydrides typically react strongly with water and air.

It is possible to produce a metallic hydride without requiring decomposition as a necessary step. If a sample of bulk metal is subjected to any one of numerous hydrogen absorption techniques, the characteristics, such as luster and hardness of the metal is often retained to a large degree. Bulk actinoid hydrides are only known in this form. The affinity for hydrogen for most of the d-block elements are low. Therefore, elements in this block do not form hydrides (the hydride gap) under standard temperature and pressure with the notable exception of palladium.Inorganic Chemistry Gary Wulfsberg 2000 Palladium can absorb up to 900 times its own volume of hydrogen and is therefore actively researched in the field hydrogen storage.

Elements in group 13 to 17 (p-block) form covalent hydrides (or nonmetal hydrides). In group 12 zinc hydride is a common chemical reagent but cadmium hydride and mercury hydride are very unstable and esoteric. In group 13 boron hydrides exist as a highly reactive monomer BH3, as an adduct for example ammonia borane or as dimeric diborane and as a whole group of BH cluster compounds. Alane (AlH3) is a polymer. Gallium exists as the dimer digallane. Indium hydride is only stable below {{Convert|−90|C}}. Not much is known about the final group 13 hydride, thallium hydride.

Due to the total number of possible binary saturated compounds with carbon of the type CnH2n+2 being very large, there are many group 14 hydrides. Going down the group the number of binary silicon compounds (silanes) is small (straight or branched but rarely cyclic) for example disilane and trisilane. For germanium only 5 linear chain binary compounds are known as gases or volatile liquids. Examples are n-pentagermane, isopentagermane and neopentagermane. Of tin only the distannane is known. Plumbane is an unstable gas.

The hydrogen halides, hydrogen chalcogenides and pnictogen hydrides also form compounds with hydrogen, whose lightest members show many anomalous properties due to hydrogen bonding.

Non-classical hydrides are those in which extra hydrogen molecules are coordinated as a ligand on the central atoms. These are very unstable but some have been shown to exist.

Polyhydrides or superhydrides are compounds in which the number of hydrogen atoms exceed the valency of the combining atom. These may only be stable under extreme pressure, but may be high temperature superconductors, such as H3S, superconducting at up to 203 K. Polyhydrides are actively studied with the hope of discovering a room temperature superconductor.

The periodic table of the stable binary hydrides

The relative stability of binary hydrogen compounds and alloys at standard temperature and pressure can be inferred from their standard enthalpy of formation values.Data in KJ/mole gas-phase source: Modern Inorganic Chemistry W.L. Jolly

class="wikitable" style="margin-left:auto; margin-right:auto; margin-bottom:0; margin-top:0; text-align:top; background-color:white; border:0px"

| style="background-color:#99bbff" | H2 0

| colspan=1 style="border:none"|

| colspan=10 style="border:none" rowspan=3|

| colspan=5 style="border:none"|

| style="background:mistyrose" |He

| style="background:#F0DC82" | LiH −91

| style="background:pink" | BeH2 negative

| style="background:#99bbff" | BH3 41

| style="background:#99bbff" | CH4 −74.8

| style="background:#99bbff" | NH3 −46.8

| style="background:#99bbff" | H2O −243

| style="background:#99bbff" | HF −272

| style="background:mistyrose" | Ne

| style="background:#F0DC82" | NaH −57

| style="background:#F0DC82" | MgH2 −75

| style="background:pink" | AlH3 −46

| style="background:#99bbff" | SiH4 31

| style="background:#99bbff" | PH3 5.4

| style="background:#99bbff" | H2S −20.7

| style="background:#99bbff" | HCl −93

| style="background:mistyrose" | Ar

| style="background:#F0DC82" | KH −58

| style="background:#F0DC82" | CaH2 −174

| style="background:#98FF98" | ScH2

| style="background:#98FF98" | TiH2

| style="background:#98FF98" | VH

| style="background:#98FF98" | CrH

| style="background:#ddd" | Mn

| style="background:#98FF98" | FeH, FeH2

| style="background:#ddd" | Co

| style="background:#98FF98" | Ni

| style="background:pink" | CuH

| style="background:pink" | ZnH2

| style="background:#99bbff" | GaH3

| style="background:#99bbff" | GeH4 92

| style="background:#99bbff" | AsH3 67

| style="background:#99bbff" | H2Se 30

| style="background:#99bbff" | HBr −36.5

| style="background:mistyrose" | Kr

| style="background:#F0DC82" | RbH −47

| style="background:#F0DC82" | SrH2 −177

| style="background:#98FF98" | YH2

| style="background:#98FF98" | ZrH2

| style="background:#98FF98" | NbH

| style="background:#ddd" | Mo

| style="background:#ddd" | Tc

| style="background:#ddd" | Ru

| style="background:#ddd" | Rh

| style="background:#98FF98" | PdH

| style="background:#ddd" | Ag

| style="background:pink" | CdH2

| style="background:pink" | InH3

| style="background:#99bbff" | SnH4 163

| style="background:#99bbff" | SbH3 146

| style="background:#99bbff" | H2Te 100

| style="background:#99bbff" | HI 26.6

| style="background:mistyrose" | Xe

| style="background:#F0DC82" | CsH −50

| style="background:#F0DC82" | BaH2 −172

| style="background:#98FF98"| LuH2

| style="background:#98FF98" | HfH2

| style="background:#98FF98" | TaH

| style="background:#ddd" | W

| style="background:#ddd" | Re

| style="background:#ddd" | Os

| style="background:#ddd" | Ir

| style="background:#ddd" | Pt

| style="background:#ddd" | Au

| style="background:#ddd" | Hg

| style="background:#ddd" | Tl

| style="background:#99bbff" | PbH4 252

| style="background:#99bbff" | BiH3 247

| style="background:#99bbff" | H2Po 167

| style="background:#99bbff" | HAt positive

| style="background:mistyrose" | Rn

style="background-color:mistyrose"

| Fr

| style="background:mistyrose" | Ra

| style="background:#98FF98"|Lr

| Rf

| Db

| Sg

| Bh

| Hs

| Mt

| Ds

| Rg

| Cn

| Nh

| Fl

| Mc

| Lv

| Ts

| Og

colspan=2 style="border:none"|

| style="border:none"| ↓

| colspan=14 style="border:none"|

style="background-color:mistyrose"

| colspan=2 style="border:none; background-color:white"|

| style="background:#98FF98"|LaH2

| style="background:#98FF98"|CeH2

| style="background:#98FF98"|PrH2

| style="background:#98FF98"|NdH2

| style="background:#98FF98"|PmH2

| style="background:#98FF98"|SmH2

| style="background:#F0DC82"|EuH2

| style="background:#98FF98"|GdH2

| style="background:#98FF98"|TbH2

| style="background:#98FF98"|DyH2

| style="background:#98FF98"|HoH2

| style="background:#98FF98"|ErH2

| style="background:#98FF98"|TmH2

| style="background:#F0DC82"|YbH2

style="background-color:mistyrose"

| colspan=2 style="border:none; background-color:white"|

| style="background:#98FF98"|Ac

| style="background:#98FF98"|Th

| style="background:#98FF98"|Pa

| style="background:#98FF98"|U

| style="background:#98FF98"|Np

| style="background:#98FF98"|Pu

| style="background:#98FF98"|Am

| style="background:#98FF98"|Cm

| style="background:#98FF98"|Bk

| style="background:#98FF98"|Cf

| style="background:#98FF98"|Es

| style="background:#98FF98"|Fm

| style="background:#98FF98"|Md

| style="background:#98FF98"|No

| style="border:none; background-color:white"|

border=2 cellpadding=4 style="margin-left:auto; margin-right:auto; text-align:center; background:silver; border:1px solid gray; border-collapse:collapse; width:50%; font-size:100%; "
+ Binary compounds of hydrogen
style="background:#99bbff" | Covalent hydrides

| style="background:#98FF98" | metallic hydrides

style="background:#F0DC82" | Ionic hydrides

| style="background:pink" | Intermediate hydrides

style="background:#ddd" | Do not exist

| style="background:mistyrose" | Not assessed

Molecular hydrides

The isolation of monomeric molecular hydrides usually require extremely mild conditions, which are partial pressure and cryogenic temperature. The reason for this is threefold - firstly, most molecular hydrides are thermodynamically unstable toward decomposition into their elements; secondly, many molecular hydrides are also thermodynamically unstable toward polymerisation; and thirdly, most molecular hydrides are also kinetically unstable toward these types of reactions due to low activation energy barriers.

Instability toward decomposition is generally attributable to poor contribution from the orbitals of the heavier elements to the molecular bonding orbitals. Instability toward polymerisation is a consequence of the electron-deficiency of the monomers relative to the polymers. Relativistic effects play an important role in determining the energy levels of molecular orbitals formed by the heavier elements. As a consequence, these molecular hydrides are commonly less electron-deficient than otherwise expected. For example, based on its position in the 12th column of the periodic table alone, mercury(II) hydride would be expected to be rather deficient. However, it is in fact satiated, with the monomeric form being much more energetically favourable than any oligomeric form.

The table below shows the monomeric hydride for each element that is closest to, but not surpassing its heuristic valence. A heuristic valence is the valence of an element that strictly obeys the octet, duodectet, and sexdectet valence rules. Elements may be prevented from reaching their heuristic valence by various steric and electronic effects. In the case of chromium, for example, stearic hindrance ensures that both the octahedral and trigonal prismatic molecular geometries for {{Chem|CrH|6}} are thermodynamically unstable to rearranging to a Kubas complex structural isomer.

Where available, both the enthalpy of formation for each monomer and the enthalpy of formation for the hydride in its standard state is shown (in brackets) to give a rough indication of which monomers tend to undergo aggregation to lower enthalpic states. For example, monomeric lithium hydride has an enthalpy of formation of 139 kJ mol−1, whereas solid lithium hydride has an enthalpy of −91 kJ mol−1. This means that it is energetically favourable for a mole of monomeric LiH to aggregate into the ionic solid, losing 230 kJ as a consequence. Aggregation can occur as a chemical association, such as polymerisation, or it can occur as an electrostatic association, such as the formation of hydrogen-bonding in water.

= Classical hydrides =

class = "wikitable" style = "margin-left:auto; margin-right:auto; margin-bottom:0; margin-top:0; text-align:top; background-color:white; border:0px"

|+ Classical hydrides

! 1

! 2

! 3

! 4

! 5

! 6

! 5

! 4

! 3

! 2

! 1

! 2

! 3

! 4

! 3

! 2

! 1

| colspan = 1 style = "border:none" rowspan = 8 |

style = "background:#99bbff" | {{Chem|H|2}} 0
style = "background:pink" | LiH{{cite journal|last1=Wang|first1=Xuefeng|last2=Andrews|first2=Lester|title=Infrared spectra and theoretical calculations of lithium hydride clusters in solid hydrogen, neon, and argon|journal=The Journal of Physical Chemistry A|date=12 July 2007|volume=111|issue=27|pages=6008–6019|doi=10.1021/jp071251y|pmid=17547379|bibcode=2007JPCA..111.6008W}} {{Sup sub|139|(−91)}}

| style = "background:#F0DC82" | dihydridoberyllium{{cite journal |last1=Tague Jr. |first1=Thomas J. |last2=Andrews |first2=Lester |title=Reactions of beryllium atoms with hydrogen. Matrix infrared spectra of novel product molecules |journal=Journal of the American Chemical Society |date=December 1993 |volume=115 |issue=25 |pages=12111–12116 |doi=10.1021/ja00078a057 |bibcode=1993JAChS.11512111T |type=PDF}} {{Sup|123}}

| colspan = 10 style = "border:none" rowspan = 2 |

| style = "background:#98FF98" | borane{{Cite journal|last=Tague Jr.|first=Thomas J.|author2=Andrews, Lester|title=Reactions of pulsed-laser evaporated boron atoms with hydrogen. Infrared spectra of boron hydride intermediate species in solid argon|journal=Journal of the American Chemical Society|date=June 1994|volume=116|issue=11|pages=4970–4976|doi=10.1021/ja00090a048|bibcode=1994JAChS.116.4970T }} {{Sup sub|107|(41)}}

| style = "background:#99bbff" | methane −75

| style = "background:#99bbff" | ammonia −46

| style = "background:#99bbff" | properties of water {{Sup sub|−242|(−286)}}

| style = "background:#99bbff" | HF −273

style = "background:pink" | NaH{{cite journal|last1=Wang|first1=Xuefeng|last2=Andrews|first2=Lester|title=Sodium hydride clusters in solid hydrogen and neon: infrared spectra and theoretical calculations|journal=The Journal of Physical Chemistry A|date=2 August 2007|volume=111|issue=30|pages=7098–7104|doi=10.1021/jp0727852|pmid=17602543|bibcode=2007JPCA..111.7098W}} {{Sup sub|140|(−56)}}

| style = "background:pink" | magnesium hydride#structure and bonding {{Sup sub|142|(−76)}}

| style = "background:#F0DC82" | aluminium hydride#molecular forms of alane{{Cite journal|last=Chertihin|first=George V.|author2=Andrews, Lester|title=Reactions of pulsed-laser ablated aluminum atoms with hydrogen: Infrared spectra of aluminum hydride (AlH, AlH2, AlH3, and Al2H2) species|journal=The Journal of Physical Chemistry|date=October 1993|volume=97|issue=40|pages=10295–10300|doi=10.1021/j100142a007}} {{Sup sub|123|(−46)}}

| style = "background:#99bbff" | silane 34

| style = "background:#99bbff" | phosphine 5

| style = "background:#99bbff" | hydrogen sulfide −21

| style = "background:#99bbff" | HCl −92

style = "background:pink" | KH {{Sup sub|132|(−58)}}

| style = "background:pink" | calcium hydride {{Sup sub|192|(−174)}}

| style = "background:#F0DC82" | scandium(III) hydride

| style = "background:#ddd" | titanium(IV) hydride

| style = "background:#FBEC5D" | {{Chem|VH|2}}

| style = "background:#FBEC5D" | chromium(II) hydride#mononuclear form{{Cite journal|last=Wang|first=Xuefeng|author2=Andrews, Lester|title=Chromium hydrides and dihydrogen complexes in solid neon, argon, and hydrogen: Matrix infrared spectra and quantum chemical calculations|journal=The Journal of Physical Chemistry A|date=1 January 2003|volume=107|issue=4|pages=570–578|doi=10.1021/jp026930h|bibcode=2003JPCA..107..570W}}

| style = "background:#ddd" | {{Chem|MnH|2}}{{Cite journal|last=Wang|first=Xuefeng|author2=Andrews, Lester|title=Matrix infrared spectra and density functional theory calculations of manganese and rhenium hydrides|journal=The Journal of Physical Chemistry A|date=30 April 2003|volume=107|issue=20|pages=4081–4091|doi=10.1021/jp034392i|bibcode=2003JPCA..107.4081W}} (−12)

| style = "background:#FBEC5D" | iron(II) hydride{{Cite journal|last=Wang|first=Xuefeng|author2=Andrews, Lester|title=Infrared Spectra and Theoretical Calculations for Fe, Ru, and Os Metal Hydrides and Dihydrogen Complexes|journal=The Journal of Physical Chemistry A|date=18 December 2008|volume=113|issue=3|pages=551–563|doi=10.1021/jp806845h|bibcode=2009JPCA..113..551W|pmid=19099441}} 324

| style = "background:#ddd" | {{Chem|CoH|2}}{{cite journal|last1=Billups|first1=W. E.|last2=Chang|first2=Sou-Chan|last3=Hauge|first3=Robert H.|last4=Margrave|first4=John L.|title=Low-Temperature Reactions of Atomic Cobalt with {{Chem|CH|2|N|2}}, {{Chem|CH|4}}, {{Chem|CH|3|D}}, {{Chem|CH|2|D|2}}, {{Chem|CHD|3}}, {{Chem|CD|4}}, {{Chem|H|2}}, {{Chem|D|2}}, and HD|journal=Journal of the American Chemical Society|date=February 1995|volume=117|issue=4|pages=1387–1392|doi=10.1021/ja00109a024}}

| style = "background:#FBEC5D" | {{Chem|NiH|2}}{{Cite journal|last1=Li|first1=S.|last2=van Zee|first2=R. J.|last3=Weltner Jr.|first3=W.|last4=Cory|first4=M. G.|last5=Zerner|first5=M. C.|title=Magneto-Infrared Spectra of Matrix-Isolated NiH and {{Chem|NiH|2}} Molecules and Theoretical Calculations of the Lowest Electronic States of {{Chem|NiH|2}}|journal=The Journal of Chemical Physics|date=8 February 1997|volume=106|issue=6|pages=2055–2059|doi=10.1063/1.473342|bibcode=1997JChPh.106.2055L}} 168

| style = "background:#F0DC82" | CuH{{Cite journal|last=Wang|first=Xuefeng|author2=Andrews, Lester|title=Infrared spectra and DFT calculations for the coinage metal hydrides MH, {{Chem{{!}}(H|2|)MH}}, {{Chem|MH|2}}, {{Chem|M|2|H}}, {{Chem|M|2|H

}}, and {{Chem|(H|2|)CuHCu}} in solid argon, neon, and hydrogen|journal=The Journal of Physical Chemistry A|date=13 September 2003|volume=107|issue=41|pages=8492–8505|doi=10.1021/jp0354346|bibcode=2003JPCA..107.8492W}} {{Sup sub|278|(28)}}

| style = "background:#F0DC82" | zinc(II) hydride#molecular form{{Cite journal|last=Greene|first=Tim M.|author2=Brown, Wendy |author3=Andrews, Lester |author4=Downs, Anthony J. |author5=Chertihin, George V. |author6=Runeberg , Nino |author7= Pyykko, Pekka |title=Matrix infrared spectroscopic and ab initio studies of ZnH2, CdH2, and related metal hydride species|journal=The Journal of Physical Chemistry|date=May 1995|volume=99|issue=20|pages=7925–7934|doi=10.1021/j100020a014}} 162

| style = "background:#98FF98" | gallane{{Cite journal|last=Wang|first=Xuefeng|author2=Andrews, Lester|title=Infrared spectra of gallium hydrides in solid hydrogen: {{Chem{{!}}Ga|H|1,2,3}}, {{Chem|Ga|2|H|2,4,6}}, and the {{Chem|GaH|2,4

}} anions|journal=The Journal of Physical Chemistry A|date=2 December 2003|volume=107|issue=51|pages=11371–11379|doi=10.1021/jp035393d|bibcode=2003JPCA..10711371W}} 151

| style = "background:#99bbff" | germane 92

| style = "background:#99bbff" | arsine 67

| style = "background:#99bbff" | hydrogen selenide 30

| style = "background:#99bbff" | HBr −36

style = "background:pink" | RbH {{Sup sub|132|(−47)}}

| style = "background:pink" | {{Chem|SrH|2}} {{Sup sub|201|(−177)}}

| style = "background:#F0DC82" | {{Chem|YH|3}}

| style = "background:#ddd" | {{Chem|ZrH|4}}

| style = "background:#ddd" | {{Chem|NbH|4}}

| style = "background:#ddd" | {{Chem|MoH|6}}{{Cite journal|last=Wang|first=Xuefeng|author2=Andrews, Lester|title=Matrix infrared spectra and density functional theory calculations of molybdenum hydrides|journal=The Journal of Physical Chemistry A|date=17 September 2005|volume=109|issue=40|pages=9021–9027|doi=10.1021/jp053591u|pmid=16332007|bibcode=2005JPCA..109.9021W}}

| style = "background:silver" | Tc

| style = "background:#ddd" | {{Chem|RuH|2}}

| style = "background:#ddd" | {{Chem|RhH|2}}{{Cite journal|last=Wang|first=Xuefeng|author2=Andrews, Lester|title=Infrared spectra of rhodium hydrides in solid argon, neon, and deuterium with supporting density functional calculations|journal=The Journal of Physical Chemistry A|date=19 March 2002|volume=106|issue=15|pages=3706–3713|doi=10.1021/jp013624f|bibcode=2002JPCA..106.3706W}}

| style = "background:#FBEC5D" | PdH{{Cite journal|last1=Andrews|first1=Lester|last2=Wang |first2=Xuefeng |last3=Alikhani |first3=Mohammad Esmaïl |last4=Manceron |first4=Laurent|title=Observed and calculated infrared spectra of {{Chem{{!}}Pd(H|2|)|1,2,3}} complexes and palladium hydrides in solid argon and neon|journal=The Journal of Physical Chemistry A|date=6 March 2001|volume=15|issue=13|pages=3052–3063|doi=10.1021/jp003721t|bibcode=2001JPCA..105.3052A}} 361

| style = "background:#ddd" | AgH 288

| style = "background:#F0DC82" | cadmium hydride#molecular cdh2 183

| style = "background:#F0DC82" | indium hydride#indigane{{Cite journal|last=Wang|first=Xuefeng|author2=Andrews, Lester|title=Infrared spectra of indium hydrides in solid hydrogen and neon|journal=The Journal of Physical Chemistry A|date=24 April 2004|volume=108|issue=20|pages=4440–4448|doi=10.1021/jp037942l|bibcode=2004JPCA..108.4440W}} 222

| style = "background:#99bbff" | stannane 163

| style = "background:#99bbff" | stibine 146

| style = "background:#99bbff" | hydrogen telluride 100

| style = "background:#99bbff" | HI 27

style = "background:pink" | CsH {{Sup sub|119|(−50)}}

| style = "background:pink" | {{Chem|BaH|2}} {{Sup sub|213|(−177)}}

| style = "background:#ddd" | {{Chem|LuH|3}}

| style = "background:#ddd" | {{Chem|HfH|4}}

| style = "background:#ddd" | {{Chem|TaH|4}}{{Cite journal|last1=Wang|first1=Xuefeng|last2=Andrews|first2=Lester|title=Tetrahydrometalate Species {{Chem|VH|2|(H|2|)}}, {{Chem|NbH|4}}, and {{Chem|TaH|4}}: Matrix Infrared Spectra and Quantum Chemical Calculations|journal=The Journal of Physical Chemistry A|date=15 December 2011|volume=115|issue=49|pages=14175–14183|doi=10.1021/jp2076148|bibcode=2011JPCA..11514175W}}

| style = "background:#F0DC82" | {{Chem|WH|6}}{{Cite journal|last=Wang|first=Xuefeng|author2=Andrews, Lester|title=Neon Matrix Infrared Spectra and DFT Calculations of Tungsten Hydrides {{Chem|WH|x}} (x = 1−4, 6)|journal=The Journal of Physical Chemistry A|date=29 June 2002|volume=106|issue=29|pages=6720–6729|doi=10.1021/jp025920d|bibcode=2002JPCA..106.6720W}} 586

| style = "background:#ddd" | {{Chem|ReH|4}}

| style = "background:silver" | Os

| style = "background:silver" | Ir

| style = "background:#ddd" | {{Chem|PtH|2}}{{Cite journal|last1=Andrews|first1=Lester|last2=Wang|first2=Xeufeng|last3=Manceron|first3=Laurent|title=Infrared Spectra and Density Functional Calculations of Platinum Hydrides|journal=The Journal of Chemical Physics|date=22 January 2001|volume=114|issue=4|pages=1559|doi=10.1063/1.1333020|bibcode=2001JChPh.114.1559A}}

| style = "background:#ddd" | AuH 295

| style = "background:#99bbff" | mercury(II) hydride{{Cite journal|last=Wang|first=Xuefeng|author2=Andrews, Lester|title=Solid Mercury Dihydride: Mercurophilic Bonding in Molecular {{Chem|HgH|2}} Polymers|journal=Inorganic Chemistry|date=2 October 2004|volume=43|issue=22|pages=7146–7150|doi=10.1021/ic049100m|pmid=15500353}} 101

| style = "background:#ddd" | thallium hydride{{Cite journal|last=Wang|first=Xuefeng|author2=Andrews, Lester|title=Infrared Spectra of Thallium Hydrides in Solid Neon, Hydrogen, and Argon|journal=The Journal of Physical Chemistry A|date=19 March 2004|volume=108|issue=16|pages=3396–3402|doi=10.1021/jp0498973|bibcode=2004JPCA..108.3396W}} 293

| style = "background:#99bbff" | plumbane 252

| style = "background:#99bbff" | bismuthine 247

| style = "background:#99bbff" | polonium hydride 167

| style = "background:#ddd" | HAt 88

style = "background:silver" | Fr

| style = "background:silver" | Ra

| style = "background:silver" | Lr

| style = "background:silver" | Rf

| style = "background:silver" | Db

| style = "background:silver" | Sg

| style = "background:silver" | Bh

| style = "background:silver" | Hs

| style = "background:silver" | Mt

| style = "background:silver" | Ds

| style = "background:silver" | Rg

| style = "background:silver" | Cn

| style = "background:silver" | Nh

| style = "background:silver" | Fl

| style = "background:silver" | Mc

| style = "background:silver" | Lv

| style = "background:silver" | Ts

colspan = 2 style = "border:none" rowspan = 4 |

| style = "border:none" | ↓

3

! 4

! 5

! 6

! 7

! 8

! 7

! 6

! 5

! 4

! 3

! 2

! 1

! 2

style = "background:#F0DC82" | {{Chem|LaH|3}}

| style = "background:#ddd" | {{Chem|CeH|4}}

| style = "background:#ddd" | {{Chem|PrH|3}}

| style = "background:#ddd" | {{Chem|NdH|4}}

| style = "background:silver" | Pm

| style = "background:#ddd" | {{Chem|SmH|4}}

| style = "background:#ddd" | {{Chem|EuH|3}}{{Cite journal|last1=Matsuoka|first1=T.|last2=Fujihisa|first2=H.|last3=Hirao|first3=N.|last4=Ohishi|first4=Y.|last5=Mitsui|first5=T.|last6=Masuda|first6=R.|last7=Seto|first7=M.|last8=Yoda|first8=Y.|last9=Shimizu|first9=K.|last10=Machida|first10=A.|last11=Aoki|first11=K.|title=Structural and valence changes of europium hydride induced by application of high-pressure {{Chem|H|2}}|journal=Physical Review Letters|date=5 July 2011|volume=107|issue=2|doi=10.1103/PhysRevLett.107.025501|bibcode=2011PhRvL.107b5501M|pmid=21797616|pages=025501}}

| style = "background:#F0DC82" | {{Chem|GdH|3}}

| style = "background:#F0DC82" | {{Chem|TbH|3}}

| style = "background:#ddd" | {{Chem|DyH|4}}

| style = "background:#ddd" | {{Chem|HoH|3}}

| style = "background:#ddd" | {{Chem|ErH|2}}

| style = "background:#ddd" | TmH

| style = "background:#F0DC82" | {{Chem|YbH|2}}

style = "background:silver" | Ac

| style = "background:#ddd" | {{Chem|ThH|4}}{{Cite journal|last1=Wang|first1=Xuefeng|last2=Andrews|first2=Lester|last3=Gagliardi|first3=Laura|title=Infrared Spectra of {{Chem|ThH|2}}, {{Chem|ThH|4}}, and the Hydride Bridging {{Chem|ThH|4|(H|2|)|x}} (x = 1−4) Complexes in Solid Neon and Hydrogen|journal=The Journal of Physical Chemistry A|date=28 February 2008|volume=112|issue=8|pages=1754–1761|doi=10.1021/jp710326k|pmid=18251527|bibcode=2008JPCA..112.1754W|url=http://archive-ouverte.unige.ch/unige:71|url-access=subscription}}

| style = "background:silver" | Pa

| style = "background:#ddd" | uranium(IV) hydride{{Cite journal|last1=Raab|first1=Juraj|last2=Lindh|first2=Roland H.|last3=Wang|first3=Xuefeng|last4=Andrews|first4=Lester|last5=Gagliardi|first5=Laura|title=A Combined Experimental and Theoretical Study of Uranium Polyhydrides with New Evidence for the Large Complex {{Chem|UH|4|(H|2|)|6}}|journal=The Journal of Physical Chemistry A|date=19 May 2007|volume=111|issue=28|pages=6383–6387|doi=10.1021/jp0713007|pmid=17530832|bibcode=2007JPCA..111.6383R|url=http://archive-ouverte.unige.ch/unige:3194}}

| style = "background:silver" | Np

| style = "background:silver" | Pu

| style = "background:silver" | Am

| style = "background:silver" | Cm

| style = "background:silver" | Bk

| style = "background:silver" | Cf

| style = "background:silver" | Es

| style = "background:silver" | Fm

| style = "background:silver" | Md

| style = "background:silver" | No

border = 2 cellpadding = 4 style = "margin-left:auto;margin-right:auto;text-align:center;border:1px solid gray;border-collapse:collapse;width:50%;font-size:100%;"
+ Legend
style = "background:#99bbff" | Monomeric covalent

| 100px

| style = "background:#98FF98" | Oligomeric covalent

| 100px

style = "background:#F0DC82" | Polymeric covalent

| rowspan = "2" | 100px

| rowspan = "2" style = "background:pink" | Ionic

| rowspan = "2" | 100px

style = "background:#FBEC5D" | Polymeric delocalised covalent
style = "background:#ddd" | Unknown solid structure

| 50px

| colspan = 2 style = "background:silver" | Not assessed

This table includes the thermally unstable dihydrogen complexes for the sake of completeness. As with the above table, only the complexes with the most complete valence is shown, to the negligence of the most stable complex.

= Non-classical covalent hydrides =

A molecular hydride may be able to bind to hydrogen molecules acting as a ligand. The complexes are termed non-classical covalent hydrides. These complexes contain more hydrogen than the classical covalent hydrides, but are only stable at very low temperatures. They may be isolated in inert gas matrix, or as a cryogenic gas. Others have only been predicted using computational chemistry.

class="wikitable" style="margin-left:auto;margin-right:auto;margin-bottom:0;margin-top:0;text-align:top;background-color:white;border:0px"

|+ Non-classical covalent hydrides

colspan = 2 | 8

! colspan = 8 | 18

! colspan = 3 | 8

style = "background:#99bbff" | {{Chem|LiH|(H|2|)|2}}

| style = "background:#ddd" | Be

| colspan = 10 style = "border:none" rowspan = 2 |

| style = "background:#99bbff" | {{Chem|BH|3|(H|2|)}}

style = "background:#ddd" | Na

| style = "background:#ddd" | {{Chem|MgH|2|(H|2|)|n}}{{cite journal|last=Wang|first=Xuefeng|author2=Lester Andrews |year=2004|title=Infrared Spectra of Magnesium Hydride Molecules, Complexes, and Solid Magnesium Dihydride|journal=The Journal of Physical Chemistry A|volume=108|issue=52|pages=11511–11520|issn=1089-5639|doi=10.1021/jp046410h|bibcode=2004JPCA..10811511W}}

| style = "background:#99bbff" | {{Chem|AlH|3|(H|2|)}}

style = "background:#ddd" | K

| style = "background:#ddd" | Ca{{cite journal|last1=Wang|first1=Xuefeng|last2=Andrews|first2=Lester|title=Metal Dihydride (MH 2 ) and Dimer (M H2 ) Structures in Solid Argon, Neon, and Hydrogen (M = Ca, Sr, and Ba): Infrared Spectra and Theoretical Calculations|journal=The Journal of Physical Chemistry A|date=December 2004|volume=108|issue=52|pages=11500–11510|doi=10.1021/jp046046m|bibcode=2004JPCA..10811500W}}

| style = "background:#99bbff" | {{Chem|ScH|3|(H|2|)|6}}{{cite web|last1=Zhao|first1=Yufeng|last2=Kim|first2=Yong-Hyun|last3=Dillon|first3=Anne C.|last4=Heben|first4=Michael J.|last5=Zhang|first5=Shengbai|title=Towards High wt%, Room Temperature Reversible, Carbon-Based Hydrogen Adsorbents|url=https://www.researchgate.net/publication/260320124|website=ResearchGate|access-date=30 November 2015|date=4 August 2014}} Scandium has many empty orbitals to accommodate dihydrogen{{cite journal|last1=Zhao|first1=Yufeng|last2=Kim|first2=Yong-Hyun|last3=Dillon|first3=A. C.|last4=Heben|first4=M. J.|last5=Zhang|first5=S. B.|title=Hydrogen Storage in Novel Organometallic Buckyballs|journal=Physical Review Letters|date=22 April 2005|volume=94|issue=15|doi=10.1103/PhysRevLett.94.155504|bibcode=2005PhRvL..94o5504Z|pmid=15904160|page=155504}}

| style = "background:#ddd" | {{Chem|TiH|2|(H|2|)}}{{cite journal|last1=Ma|first1=Buyong|last2=Collins|first2=Charlene L.|last3=Schaefer|first3=Henry F.|title=Periodic Trends for Transition Metal Dihydrides MH , Dihydride Dihydrogen Complexes MH 2 ·H2 , and Tetrahydrides MH4 (M = Ti, V, and Cr)|journal=Journal of the American Chemical Society|date=January 1996|volume=118|issue=4|pages=870–879|doi=10.1021/ja951376t|bibcode=1996JAChS.118..870M }}

| style = "background:#99bbff" | {{Chem|VH|2|(H|2|)}}

| style = "background:#99bbff" | CrH2(H2)2{{cite journal|last1=Wang|first1=Xuefeng|last2=Andrews|first2=Lester|title=Chromium Hydrides and Dihydrogen Complexes in Solid Neon, Argon, and Hydrogen: Matrix Infrared Spectra and Quantum Chemical Calculations|journal=The Journal of Physical Chemistry A|date=January 2003|volume=107|issue=4|pages=570–578|doi=10.1021/jp026930h|bibcode=2003JPCA..107..570W}}

| style = "background:#ddd" | Mn

| style = "background:#99bbff" | {{Chem|FeH|2|(H|2|)|3}}{{Cite journal|last=Wang|first=Xuefeng|author2=Andrews, Lester|title=Infrared spectra and theoretical calculations for Fe, Ru, and Os metal hydrides and dihydrogen complexes|journal=The Journal of Physical Chemistry A|date=18 December 2008|volume=113|issue=3|pages=551–563|doi=10.1021/jp806845h|pmid=19099441|bibcode=2009JPCA..113..551W}}

| style = "background:#99bbff" | {{Chem|CoH(H|2|)}}

| style = "background:#99bbff" | {{Chem|Ni(H|2|)|4}}

| style = "background:#99bbff" | CuH(H2)

| style = "background:#99bbff" | {{Chem|ZnH|2|(H|2|)}}

| style = "background:#99bbff" | {{Chem|GaH|3|(H|2|)}}

style = "background:#ddd" | Rb

| style = "background:#ddd" | Sr

| style = "background:#99bbff" | {{Chem|YH|2|(H|2|)|3}}

| style = "background:#ddd" | Zr

| style = "background:#99bbff" | {{Chem|NbH|4|(H|2|)|4}}{{cite journal|last1=Gao|first1=Guoying|last2=Hoffmann|first2=Roald|last3=Ashcroft|first3=N. W.|last4=Liu|first4=Hanyu|last5=Bergara|first5=Aitor|last6=Ma|first6=Yanming|title=Theoretical study of the ground-state structures and properties of niobium hydrides under pressure|journal=Physical Review B|date=12 November 2013|volume=88|issue=18|pages=184104|doi=10.1103/PhysRevB.88.184104|bibcode=2013PhRvB..88r4104G|url=https://digital.csic.es/bitstream/10261/102456/1/Theoretical%20study%20of%20the%20ground-state.pdf|hdl=10261/102456|hdl-access=free}}

| style = "background:#ddd" | Mo

| style = "background:#ddd" | Tc

| style = "background:#99bbff" | {{Chem|RuH|2|(H|2|)|4}}{{cite journal|last1=Wang|first1=Xuefeng|last2=Andrews|first2=Lester|title=Infrared spectrum of the {{Chem|RuH|2|(H|2|)|4}} complex in solid hydrogen|journal=Organometallics|date=13 August 2008|volume=27|issue=17|pages=4273–4276|doi=10.1021/om800507u}}

| style = "background:#99bbff" | RhH3(H2)

| style = "background:#99bbff" | {{Chem|Pd(H|2|)|3}}

| style = "background:#99bbff" | AgH(H2)

| style = "background:#99bbff" | {{Chem|CdH(H|2|)}}

| style = "background:#99bbff" | {{Chem|InH|3|(H|2|)}}{{cite journal|last1=Wang|first1=Xuefeng|last2=Andrews|first2=Lester|title=Infrared Spectra of Indium Hydrides in Solid Hydrogen and Neon|journal=The Journal of Physical Chemistry A|date=May 2004|volume=108|issue=20|pages=4440–4448|doi=10.1021/jp037942l|bibcode=2004JPCA..108.4440W}}

style = "background:#ddd" | Cs

| style = "background:#ddd" | Ba

| style = "background:#ddd" | Lu

| style = "background:#ddd" | Hf

| style = "background:#99bbff" | {{Chem|TaH|4|(H|2|)|4}}

| style = "background:#99bbff" | {{Chem|WH|4|(H|2|)|4}}{{cite journal|last1=Wang|first1=Xuefeng|last2=Andrews|first2=Lester|last3=Infante|first3=Ivan|last4=Gagliardi|first4=Laura|title=Infrared Spectra of the WH4(H2) 4 Complex in Solid Hydrogen|journal=Journal of the American Chemical Society|date=February 2008|volume=130|issue=6|pages=1972–1978|doi=10.1021/ja077322o|pmid=18211070|bibcode=2008JAChS.130.1972W |url=http://archive-ouverte.unige.ch/unige:69}}

| style = "background:#ddd" | Re

| style = "background:#ddd" | Os

| style = "background:#ddd" | Ir

| style = "background:#99bbff" | {{Chem|PtH(H|2|)}}

| style = "background:#99bbff" | {{Chem|AuH|3|(H|2|)}}

| style = "background:#ddd" | Hg

| style = "background:#ddd" | Tl

style = "background:#ddd" | Fr

| style = "background:#ddd" | Ra

| style = "background:#ddd" | Lr

| style = "background:#ddd" | Rf

| style = "background:#ddd" | Db

| style = "background:#ddd" | Sg

| style = "background:#ddd" | Bh

| style = "background:#ddd" | Hs

| style = "background:#ddd" | Mt

| style = "background:#ddd" | Ds

| style = "background:#ddd" | Rg

| style = "background:#ddd" | Cn

| style = "background:#ddd" | Nh

colspan = 2 style = "border:none" rowspan = 4 |

| style = "border:none" | ↓

colspan = 12 | 32

! colspan = 2 | 18

style = "background:#99bbff" | {{Chem|LaH|2|(H|2|)|2}}

| style = "background:#99bbff" | {{Chem|CeH|2|(H|2|)}}

| style = "background:#99bbff" | {{Chem|PrH|2|(H|2|)|2}}

| style = "background:#ddd" | Nd

| style = "background:#ddd" | Pm

| style = "background:#ddd" | Sm

| style = "background:#ddd" | Eu

| style = "background:#99bbff" | {{Chem|GdH|2|(H|2|)}}

| style = "background:#ddd" | Tb

| style = "background:#ddd" | Dy

| style = "background:#ddd" | Ho

| style = "background:#ddd" | Er

| style = "background:#ddd" | Tm

| style = "background:#ddd" | Yb

style = "background:#ddd" | Ac

| style = "background:#99bbff" | ThH4(H2)4{{cite journal|last1=Wang|first1=Xuefeng|last2=Andrews|first2=Lester|last3=Gagliardi|first3=Laura|title=Infrared Spectra of ThH2, ThH4, and the Hydride Bridging ThH4(H2) x(x= 1−4) Complexes in Solid Neon and Hydrogen|journal=The Journal of Physical Chemistry A|date=February 2008|volume=112|issue=8|pages=1754–1761|doi=10.1021/jp710326k|pmid=18251527|bibcode=2008JPCA..112.1754W|url=http://archive-ouverte.unige.ch/unige:71|url-access=subscription}}

| style = "background:#ddd" | Pa

| style = "background:#99bbff" | {{Chem|UH|4|(H|2|)|6}}

| style = "background:#ddd" | Np

| style = "background:#ddd" | Pu

| style = "background:#ddd" | Am

| style = "background:#ddd" | Cm

| style = "background:#ddd" | Bk

| style = "background:#ddd" | Cf

| style = "background:#ddd" | Es

| style = "background:#ddd" | Fm

| style = "background:#ddd" | Md

| style = "background:#ddd" | No

border=2 cellpadding=4 style="margin-left:auto;margin-right:auto;text-align:center;background:silver;border:1px solid gray;border-collapse:collapse;width:50%;font-size:100%;"
+ Legend
style = "background:#99bbff" | Assessed{{By whom|date=November 2015}}

| style = "background:#ddd" | Not assessed

Hydrogen solutions

Hydrogen has a highly variable solubility in the elements. When the continuous phase of the solution is a metal, it is called a metallic hydride or interstitial hydride, on account of the position of the hydrogen within the crystal structure of the metal. In solution, hydrogen can occur in either the atomic or molecular form. For some elements, when hydrogen content exceeds its solubility, the excess precipitates out as a stoichiometric compound. The table below shows the solubility of hydrogen in each element as a molar ratio at {{Convert|25|C|F}} and 100 kPa.

class = "wikitable" style = "margin-left:auto; margin-right:auto; margin-bottom:0; margin-top:0; text-align:top; background-color:white; border:0px"

|+

colspan=17 style="border:none"|

| style = "background:#99bbff" | He

style = "background:#ddd" | {{Chem|LiH|<1{{E
4}}}}
Upper limit imposed by phase diagram, taken at 454 K.{{Cite journal|last1=Songster|first1=J.|last2=Pélton|first2=A. D.|title=The H-Li (Hydrogen-Lithium) System|journal=Journal of Phase Equilibria|date=1 June 1993|volume=14|issue=3|pages=373–381|doi=10.1007/BF02668238}}

| style = "background:silver" | Be

| colspan = 10 style = "border:none" rowspan = 2 |

| style = "background:silver" | B

| style = "background:silver" | C

| style = "background:#99bbff" | N

| style = "background:#99bbff" | O

| style = "background:#99bbff" | F

| style = "background:#99bbff" | Ne

style = "background:#ddd" | {{Chem|NaH|<8{{E
7}}}}
Upper limit imposed by phase diagram, taken at 383 K.{{Cite journal|last1=San-Martin|first1=A.|last2=Manchester|first2=F. D.|title=The H-Na (Hydrogen-Sodium) System|journal=Bulletin of Alloy Phase Diagrams|date=1 June 1990|volume=11|issue=3|pages=287–294|doi=10.1007/BF03029300}}

| style = "background:#ddd" | {{Chem|MgH|<0.010}}
Upper limit imposed by phase diagram, taken at 650 K and 25 MPa.{{Cite journal|last1=San-Martin|first1=A.|last2=Manchester|first2=F. D.|title=The H−Mg (Hydrogen-Magnesium) System|journal=Journal of Phase Equilibria|date=1 October 1987|volume=8|issue=5|pages=431–437|doi=10.1007/BF02893152}}

| style = "background:#ddd" | {{Chem|AlH|<2.5{{E

8}}}}
Upper limit imposed by phase diagram, taken at 556 K.{{cite journal|last1=Qiu|first1=Caian|last2=Olson|first2=Gregory B.|last3=Opalka|first3=Susanne M.|last4=Anton|first4=Donald L.|title=Thermodynamic evaluation of the Al-H system|journal=Journal of Phase Equilibria and Diffusion|date=1 November 2004|volume=25|issue=6|pages=520–527|doi=10.1007/s11669-004-0065-1|bibcode=2004JPED...25..520Q |issn=1863-7345}}

| style = "background:silver" | Si

| style = "background:silver" | P

| style = "background:silver" | S

| style = "background:#99bbff" | Cl

| style = "background:#99bbff" | Ar

style = "background:#ddd" | {{Chem|KH|<<0.01}}
Upper limit imposed by phase diagram.{{Cite journal|last1=Sangster|first1=J.|last2=Pelton|first2=A. D.|title=The H-K (Hydrogen-Potassium) System|journal=Journal of Phase Equilibria|date=1 August 1997|volume=18|issue=4|pages=387–389|doi=10.1007/s11669-997-0066-y}}

| style = "background:#ddd" | {{Chem|CaH|<<0.01}}
Upper limit imposed by phase diagram, taken at 500 K.{{Cite book|last1=Predel|first1=B.|editor1-last=Madelung|editor1-first=O.|title=Ca-Cd – Co-Zr|date=1993|publisher=Springer Berlin Heidelberg|isbn=978-3-540-47411-1|pages=1–3|chapter=Ca-H (Calcium-Hydrogen)|doi=10.1007/10086082_696|series=Landolt-Börnstein - Group IV Physical Chemistry}}

| style = "background:#ddd" | {{Chem|ScH|≥1.86}}
Lower limit imposed by phase diagram.{{Cite journal|last1=Manchester|first1=F. D.|last2=Pitre|first2=J. M.|title=The H-Sc (Hydrogen-Scandium) System|journal=Journal of Phase Equilibria|date=1 April 1997|volume=18|issue=2|pages=194–205|doi=10.1007/BF02665706}}

| style = "background:#ddd" | {{Chem|TiH|2.00}}
Limit imposed by phase diagram.{{Cite journal|last1=San-Martin|first1=A.|last2=Manchester|first2=F. D.|title=The H−Ti (Hydrogen-Titanium) System|journal=Bulletin of Alloy Phase Diagrams|date=1 February 1987|volume=8|issue=1|pages=30–42|doi=10.1007/BF02868888}}

| style = "background:#ddd" | {{Chem|VH|1.00}}
Limit imposed by phase diagram.{{cite book|last1=Predel|first1=B.|editor1-last=Madelung|editor1-first=O.|title=Ga-Gd – Hf-Zr|date=1996|publisher=Springer Berlin Heidelberg|isbn=978-3-540-44996-6|pages=1–5|chapter=H-V (Hydrogen-Vanadium)|doi=10.1007/10501684_1565|series=Landolt-Börnstein - Group IV Physical Chemistry}}

| style = "background:silver" | Cr

| style = "background:#ddd" | {{Chem|MnH|<5{{E

6}}}}
Upper limit imposed by phase diagram, taken at 500 K.{{Cite journal|last1=San-Martin|first1=A.|last2=Manchester|first2=F. D.|title=The H-Mn (Hydrogen-Manganese) System|journal=Journal of Phase Equilibria|date=1 June 1995|volume=16|issue=3|pages=255–262|doi=10.1007/BF02667311}}

| style = "background:#ddd" | {{Chem|FeH|3{{E

8}}}}
{{Cite journal|last1=San-Martin|first1=A.|last2=Manchester|first2=F. D.|title=The Fe-H (Iron-Hydrogen) System|journal=Bulletin of Alloy Phase Diagrams|date=1 April 1990|volume=11|issue=2|pages=173–184|doi=10.1007/BF02841704}}

| style = "background:silver" | Co

| style = "background:#ddd" | {{Chem|NiH|3{{E

5}}}}
{{Cite journal|last1=Wayman|first1=M. L.|last2=Weatherly|first2=G. C.|title=The H−Ni (Hydrogen-Nickel) System|journal=Bulletin of Alloy Phase Diagrams|date=1 October 1989|volume=10|issue=5|pages=569–580|doi=10.1007/BF02882416}}

| style = "background:#ddd" | {{Chem|CuH|<1{{E

7}}}}
Upper limit imposed by phase diagram, taken at 1000 K.{{Cite book|last1=Predel|first1=B.|editor1-last=Madelung|editor1-first=O.|title=Cr-Cs – Cu-Zr|date=1994|publisher=Springer Berlin Heidelberg|isbn=978-3-540-47417-3|pages=1–3|chapter=Cu-H (Copper-Hydrogen)}}

| style = "background:#ddd" | {{Chem|ZnH|<3{{E

7}}}}
Upper limit at 500 K.{{Cite journal|last1=San-Martin|first1=A.|last2=Manchester|first2=F. D.|title=The H-Zn (Hydrogen-Zinc) System|journal=Bulletin of Alloy Phase Diagrams|date=1 December 1989|volume=10|issue=6|pages=664–666|doi=10.1007/BF02877640}}

| style = "background:silver" | Ga

| style = "background:silver" | Ge

| style = "background:silver" | As

| style = "background:silver" | Se

| style = "background:silver" | Br

| style = "background:#99bbff" | Kr

style = "background:#ddd" | {{Chem|RbH|<<0.01}}
Upper limit imposed by phase diagram.{{Cite journal|last1=Sangster|first1=J.|last2=Pelton|first2=A. D.|title=The H-Rb (Hydrogen-Rubidium) System|journal=Journal of Phase Equilibria|date=1 February 1994|volume=15|issue=1|pages=87–89|doi=10.1007/BF02667687}}

| style = "background:silver" | Sr

| style = "background:#ddd" | {{Chem|YH|≥2.85}}
Lower limit imposed by phase diagram.{{cite journal|last1=Khatamian|first1=D.|last2=Manchester|first2=F. D.|title=The H−Y (Hydrogen-Yttrium) System|journal=Bulletin of Alloy Phase Diagrams|date=1 June 1988|volume=9|issue=3|pages=252–260|doi=10.1007/BF02881276}}

| style = "background:#ddd" | {{Chem|ZrH|≥1.70}}
Lower limit imposed by phase diagram.{{Cite journal|last1=Zuzek|first1=E.|last2=Abriata|first2=J. P.|last3=San-Martin|first3=A.|last4=Manchester|first4=F. D.|title=The H-Zr (Hydrogen-Zirconium) System|journal=Bulletin of Alloy Phase Diagrams|date=1 August 1990|volume=11|issue=4|pages=385–395|doi=10.1007/BF02843318}}

| style = "background:#ddd" | {{Chem|NbH|1.1}}
Limit imposed by phase diagram.{{Cite journal|last1=Okamoto|first1=H.|title=H-Nb (Hydrogen-Niobium)|journal=Journal of Phase Equilibria and Diffusion|date=1 April 2013|volume=34|issue=2|pages=163–164|doi=10.1007/s11669-012-0165-2|bibcode=2013JPED...34..163O }}

| style = "background:silver" | Mo

| style = "background:silver" | Tc

| style = "background:silver" | Ru

| style = "background:silver" | Rh

| style = "background:#ddd" | {{Chem|PdH|0.724}}
{{Cite book|author1=Materials Science International Team|editor1-last=Effenberg|editor1-first=G.|editor2-last=Ilyenko|editor2-first=S.|title=Noble Metal Systems. Selected Systems from Ag-Al-Zn to Rh-Ru-Sc|volume=11B|date=2006|publisher=Springer Berlin Heidelberg|location=Berlin|isbn=978-3-540-46994-0|pages=1–8|chapter=Au-H-Pd (Gold - Hydrogen - Palladium)|doi=10.1007/10916070_26|series=Landolt-Börnstein - Group IV Physical Chemistry}}

| style = "background:#ddd" | {{Chem|AgH|3.84{{E

14}}}}
{{Cite journal|last1=Subramanian|first1=P.R|title=The Ag-H (Silver-Hydrogen) System|journal=Journal of Phase Equilibria|date=1 December 1991|volume=12|issue=6|pages=649–651|doi=10.1007/BF02645164}}

| style = "background:silver" | Cd

| style = "background:silver" | In

| style = "background:silver" | Sn

| style = "background:silver" | Sb

| style = "background:silver" | Te

| style = "background:silver" | I

| style = "background:#99bbff" | Xe

style = "background:#ddd" | {{Chem|CsH|<<0.01}}
Upper limit imposed by phase diagram.{{cite journal|last1=Songster|first1=J.|last2=Pelton|first2=A. D.|title=The H-Cs (Hydrogen-Cesium) System|journal=Journal of Phase Equilibria|date=1 February 1994|volume=15|issue=1|pages=84–86|doi=10.1007/BF02667686}}

| style = "background:silver" | Ba

| style = "background:silver" | Lu

| style = "background:silver" | Hf

| style = "background:#ddd" | {{Chem|TaH|0.79}}
Limit imposed by phase diagram.{{Cite journal|last1=San-Martin|first1=A.|last2=Manchester|first2=F. D.|title=The H-Ta (Hydrogen-Tantalum) System|journal=Journal of Phase Equilibria|date=1 June 1991|volume=12|issue=3|pages=332–343|doi=10.1007/BF02649922}}

| style = "background:silver" | W

| style = "background:silver" | Re

| style = "background:silver" | Os

| style = "background:silver" | Ir

| style = "background:silver" | Pt

| style = "background:#ddd" | {{Chem|AuH|3.06{{E

9}}}}

| style = "background:#ddd" | {{Chem|HgH|5{{E

7}}}}
{{Cite journal|last1=Guminski|first1=C.|title=The H-Hg (Hydrogen-Mercury) System|journal=Journal of Phase Equilibria|date=1 October 2002|volume=23|issue=5|pages=448–450|doi=10.1361/105497102770331460}}

| style = "background:silver" | Tl

| style = "background:silver" | Pb

| style = "background:silver" | Bi

| style = "background:silver" | Po

| style = "background:silver" | At

| style = "background:#99bbff" | Rn

style = "background:silver" | Fr

| style = "background:silver" | Ra

| style = "background:silver" | Lr

| style = "background:silver" | Rf

| style = "background:silver" | Db

| style = "background:silver" | Sg

| style = "background:silver" | Bh

| style = "background:silver" | Hs

| style = "background:silver" | Mt

| style = "background:silver" | Ds

| style = "background:silver" | Rg

| style = "background:silver" | Cn

| style = "background:silver" | Nh

| style = "background:silver" | Fl

| style = "background:silver" | Mc

| style = "background:silver" | Lv

| style = "background:silver" | Ts

| style = "background:silver" | Og

colspan = 2 style = "border:none" rowspan = 3 |

| style = "border:none" | ↓

style = "background:#ddd" | {{Chem|LaH|≥2.03}}
Lower limit imposed by phase diagram.{{Cite journal|last1=Khatamian|first1=D.|last2=Manchester|first2=F. D.|title=The H-La (Hydrogen-Lanthanum) System|journal=Bulletin of Alloy Phase Diagrams|date=1 February 1990|volume=11|issue=1|pages=90–99|doi=10.1007/BF02841589}}

| style = "background:#ddd" | {{Chem|CeH|≥2.5}}
Lower limit imposed by phase diagram.{{Cite journal|last1=Manchester|first1=F. D.|last2=Pitre|first2=J. M.|title=The Ce-H (Cerium-Hydrogen) system|journal=Journal of Phase Equilibria|date=1 February 1997|volume=18|issue=1|pages=63–77|doi=10.1007/BF02646759}}

| style = "background:silver" | Pr

| style = "background:silver" | Nd

| style = "background:silver" | Pm

| style = "background:#ddd" | {{Chem|SmH|3.00}}
{{Cite journal|last1=Zinkevich|first1=M.|last2=Mattern|first2=N.|last3=Handstein|first3=A.|last4=Gutfleisch|first4=O.|title=Thermodynamics of Fe–Sm, Fe–H, and H–Sm Systems and its Application to the Hydrogen–Disproportionation–Desorption–Recombination (HDDR) Process for the System {{Chem|Fe|17|Sm|2|–H|2}}|journal=Journal of Alloys and Compounds|date=13 June 2002|volume=339|issue=1–2|pages=118–139|doi=10.1016/S0925-8388(01)01990-9}}

| style = "background:silver" | Eu

| style = "background:silver" | Gd

| style = "background:silver" | Tb

| style = "background:silver" | Dy

| style = "background:silver" | Ho

| style = "background:silver" | Er

| style = "background:silver" | Tm

| style = "background:silver" | Yb

style = "background:silver" | Ac

| style = "background:silver" | Th

| style = "background:silver" | Pa

| style = "background:#ddd" | {{Chem|UH|≥3.00}}
Lower limit imposed by phase diagram.{{Cite journal|last1=Manchester|first1=F. D.|last2=San-Martin|first2=A.|title=The H-U (Hydrogen-Uranium) System|journal=Journal of Phase Equilibria|date=1 June 1995|volume=16|issue=3|pages=263–275|doi=10.1007/BF02667312}}

| style = "background:silver" | Np

| style = "background:silver" | Pu

| style = "background:silver" | Am

| style = "background:silver" | Cm

| style = "background:silver" | Bk

| style = "background:silver" | Cf

| style = "background:silver" | Es

| style = "background:silver" | FM

| style = "background:silver" | Md

| style = "background:silver" | No

border=2 cellpadding=4 style="margin-left:auto;margin-right:auto;text-align:center;background:silver;border:1px solid gray;border-collapse:collapse;width:50%;font-size:100%;"
+ Legend
style = "background:#99bbff" | Miscible

| style = "background:silver" | Undetermined

Notes

{{Reflist|group=nb|2}}

References

{{Reflist|2}}

{{Hydrides by group}}

{{Chemical compounds by element}}

{{DEFAULTSORT:Binary Compounds Of Hydrogen}}

Category:Hydrogen compounds

Hydrogen, binary compounds

Category:Binary compounds