bipolar theorem

{{Short description|Theorem in convex analysis}}

In mathematics, the bipolar theorem is a theorem in functional analysis that characterizes the bipolar (that is, the polar of the polar) of a set.

In convex analysis, the bipolar theorem refers to a necessary and sufficient conditions for a cone to be equal to its bipolar. The bipolar theorem can be seen as a special case of the Fenchel–Moreau theorem.{{cite book |last1=Borwein |first1=Jonathan |authorlink1=Jonathan Borwein|last2=Lewis |first2=Adrian |title=Convex Analysis and Nonlinear Optimization: Theory and Examples| edition=2 |year=2006 |publisher=Springer |isbn=9780387295701}}{{rp|76–77}}

Preliminaries

{{Main|Polar set}}

Suppose that X is a topological vector space (TVS) with a continuous dual space X^{\prime} and let \left\langle x, x^{\prime} \right\rangle := x^{\prime}(x) for all x \in X and x^{\prime} \in X^{\prime}.

The convex hull of a set A, denoted by \operatorname{co} A, is the smallest convex set containing A.

The convex balanced hull of a set A is the smallest convex balanced set containing A.

The polar of a subset A \subseteq X is defined to be:

A^\circ := \left\{ x^{\prime} \in X^{\prime} : \sup_{a \in A} \left| \left\langle a, x^{\prime} \right\rangle \right| \leq 1 \right\}.

while the prepolar of a subset B \subseteq X^{\prime} is:

{}^{\circ} B := \left\{ x \in X : \sup_{x^{\prime} \in B} \left| \left\langle x, x^{\prime} \right\rangle \right| \leq 1 \right\}.

The bipolar of a subset A \subseteq X, often denoted by A^{\circ\circ} is the set

A^{\circ\circ} := {}^{\circ}\left(A^{\circ}\right)

= \left\{ x \in X : \sup_{x^{\prime} \in A^{\circ}} \left|\left\langle x, x^{\prime} \right\rangle\right| \leq 1 \right\}.

Statement in functional analysis

Let \sigma\left(X, X^{\prime}\right) denote the weak topology on X (that is, the weakest TVS topology on X making all linear functionals in X^{\prime} continuous).

:The bipolar theorem:{{sfn|Narici|Beckenstein| 2011|pp=225-273}} The bipolar of a subset A \subseteq X is equal to the \sigma\left(X, X^{\prime}\right)-closure of the convex balanced hull of A.

Statement in convex analysis

:The bipolar theorem:{{rp|54}}{{cite book|title=Convex Optimization|first1=Stephen P.|last1=Boyd|first2=Lieven|last2=Vandenberghe|year=2004|publisher=Cambridge University Press|isbn=9780521833783|url=https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf#page=65|format=pdf|accessdate=October 15, 2011|pages=51–53}} For any nonempty cone A in some linear space X, the bipolar set A^{\circ \circ} is given by:

A^{\circ \circ} = \operatorname{cl} (\operatorname{co} \{ r a : r \geq 0, a \in A \}).

=Special case=

A subset C \subseteq X is a nonempty closed convex cone if and only if C^{++} = C^{\circ \circ} = C when C^{++} = \left(C^{+}\right)^{+}, where A^{+} denotes the positive dual cone of a set A.{{cite book|author=Rockafellar, R. Tyrrell|author-link=Rockafellar, R. Tyrrell|title=Convex Analysis|publisher=Princeton University Press|location=Princeton, NJ|year=1997|origyear=1970|isbn=9780691015866|pages=121–125}}

Or more generally, if C is a nonempty convex cone then the bipolar cone is given by

C^{\circ \circ} = \operatorname{cl} C.

Relation to the [[Fenchel–Moreau theorem]]

Let

f(x) := \delta(x|C) = \begin{cases}0 & x \in C\\ \infty & \text{otherwise}\end{cases}

be the indicator function for a cone C.

Then the convex conjugate,

f^*(x^*) = \delta\left(x^*|C^\circ\right) = \delta^*\left(x^*|C\right) = \sup_{x \in C} \langle x^*,x \rangle

is the support function for C, and f^{**}(x) = \delta(x|C^{\circ\circ}).

Therefore, C = C^{\circ \circ} if and only if f = f^{**}.{{rp|54}}

See also

  • {{annotated link|Dual system}}
  • {{annotated link|Fenchel–Moreau theorem}} − A generalization of the bipolar theorem.
  • {{annotated link|Polar set}}

References

{{reflist}}

Bibliography

  • {{Narici Beckenstein Topological Vector Spaces|edition=2}}
  • {{Schaefer Wolff Topological Vector Spaces|edition=2}}
  • {{Trèves François Topological vector spaces, distributions and kernels}}

{{Duality and spaces of linear maps}}

{{Topological vector spaces}}

Category:Convex analysis

Category:Functional analysis

Category:Theorems in mathematical analysis

Category:Linear functionals