bismuth-209

{{Short description|Isotope of bismuth}}

{{Infobox isotope

| alternate_names =

| mass_number = 209

| symbol = Bi

| num_neutrons = 126

| num_protons = 83

| abundance = 100%

| mass = 208.9803986

| spin = 9/2−

| halflife = {{val|2.01|e=19|u=years}}{{NUBASE2016|ref}}

| decay_mode1 = Alpha emission

| decay_energy1 = 3.1373

| decay_product = thallium-205

| decay_symbol = Tl

| decay_mass = 205

| excess_energy = {{val|−18258.461|2.4}}

| binding_energy = {{val|7847.987|1.7}}

|parent = lead-209

|parent_symbol=Pb

|parent_mass =209

|parent_decay =b

|parent2 = polonium-209

|parent2_symbol=Po

|parent2_mass =209

|parent2_decay =b+

|parent3 = astatine-213

|parent3_symbol=At

|parent3_mass =213

|parent3_decay =a

|image=Bismuth-209.svg

}}

Bismuth-209 ({{sup|209}}Bi) is an isotope of bismuth, with the longest known half-life of any radioisotope that undergoes α-decay (alpha decay). It has 83 protons and a magic number of 126 neutrons,{{cite journal |url= https://www.researchgate.net/publication/232899048 |last1=Blank |first1=B. |last2=Regan |first2=P.H. |title=Magic and doubly-magic nuclei |journal=Nuclear Physics News |date=2000 |volume=10 |issue=4 |pages=20–27 |doi=10.1080/10506890109411553|s2cid=121966707 }} and an atomic mass of 208.9803987 amu (atomic mass units). Primordial bismuth consists entirely of this isotope.

Decay properties

Bismuth-209 was long thought to have the heaviest stable nucleus of any element, but in 2003, a research team at the Institut d’Astrophysique Spatiale in Orsay, France, discovered that {{sup|209}}Bi undergoes alpha decay with a half-life of 20.1 exayears (2.01×10{{sup|19}}, or 20.1 quintillion years), over 10{{sup|9}} times longer than the estimated age of the universe.{{cite book|last=Kean|first=Sam|title=The Disappearing Spoon (and other true tales of madness, love, and the history of the world from the Periodic Table of Elements)|publisher=Back Bay Books |location=New York/Boston|year=2011|pages=158–160|isbn=978-0-316-051637}} The heaviest nucleus considered to be stable is now lead-208 and the heaviest stable monoisotopic element is gold (gold-197).

Theory had previously predicted a half-life of 4.6{{e|19}} years. It had been suspected to be radioactive for a long time.{{cite journal |doi = 10.1007/BF02824346 |title = Alpha-activity of {{SimpleNuclide|Bismuth|209}} |date = 1972 |last1 = Carvalho |first1 = H. G. |last2 = Penna |first2 = M. |journal = Lettere al Nuovo Cimento |volume = 3 |issue = 18|page = 720|s2cid = 120952231 }} The decay produces a 3.14 MeV alpha particle plus thallium-205.{{cite news|url = http://physicsworld.com/cws/article/news/2003/apr/23/bismuth-breaks-half-life-record-for-alpha-decay|title = Bismuth breaks half-life record for alpha decay|date = 2003-04-23|publisher = Physicsweb|first = Belle|last = Dumé}}{{cite journal | last = Marcillac | first = Pierre de |author2=Noël Coron |author3=Gérard Dambier |author4=Jacques Leblanc |author5=Jean-Pierre Moalic |date=April 2003 | title = Experimental detection of α-particles from the radioactive decay of natural bismuth | journal = Nature | volume = 422 | pages = 876–878 | doi = 10.1038/nature01541 | pmid = 12712201 | issue = 6934 | bibcode=2003Natur.422..876D| s2cid = 4415582 }}

Image:Decay Chain(4n+1, Neptunium Series).svg

Bismuth-209 forms Isotopes of thallium:

:{{nuclide|bismuth|209}} → {{nuclide|thallium|205}} + {{nuclide|helium|4}}{{Cite web | url=http://periodictable.com/Isotopes/095.241/index.full.html | title=Isotope data for americium-241 in the Periodic Table}}

If perturbed, it would join in lead-bismuth neutron capture cycle from lead-206/207/208 to bismuth-209, despite low capture cross sections. Even thallium-205, the decay product of bismuth-209, reverts to lead when fully ionized.{{cite journal|title=Bound-state beta decay of highly ionized atoms|url=https://www.researchgate.net/publication/13335547|last1=Takahashi|first1=K|last2=Boyd|first2=R. N.|last3=Mathews|first3=G. J.|last4=Yokoi|first4=K.|date=October 1987|access-date=2016-11-20|issn=0556-2813|oclc=1639677|volume=36|issue=4|pages=1522–1528|journal=Physical Review C|doi=10.1103/PhysRevC.36.1522|pmid=9954244|bibcode=1987PhRvC..36.1522T}}

Due to its hugely long half-life, for nearly all applications {{sup|209}}Bi can be treated as non-radioactive. It is much less radioactive than human flesh, so it poses no real radiation hazard. Though {{sup|209}}Bi holds the half-life record for alpha decay, it does not have the longest known half-life of any nuclide; this distinction belongs to tellurium-128 (tellurium-128) with a half-life estimated at 7.7 × 10{{sup|24}} years by double β-decay (double beta decay).{{cite web|url=http://presolar.wustl.edu/work/noblegas.html |title=Noble Gas Research |access-date=2013-01-10 |url-status=dead |archive-url=https://web.archive.org/web/20110928143717/http://presolar.wustl.edu/work/noblegas.html |archive-date=2011-09-28 }} Tellurium-128 information and half-life. Accessed July 14, 2009.{{Cite journal| last1 = Audi| first1 = G.|title = The NUBASE Evaluation of Nuclear and Decay Properties| journal = Nuclear Physics A| volume = 729| issue = 1| pages = 3–128|publisher = Atomic Mass Data Center| date = 2003| doi = 10.1016/j.nuclphysa.2003.11.001| bibcode=2003NuPhA.729....3A| last2 = Bersillon| first2 = O.| last3 = Blachot| first3 = J.| last4 = Wapstra| first4 = A. H.| url = http://hal.in2p3.fr/in2p3-00014184}}{{Cite web|title = WWW Table of Radioactive Isotopes: Tellurium|publisher = Nuclear Science Division, Lawrence Berkeley National Laboratory|date = 2008|url = http://ie.lbl.gov/toi/nuclide.asp?iZA=520128|access-date = 2010-01-16|archive-url = https://web.archive.org/web/20100205101344/http://ie.lbl.gov/toi/nuclide.asp?iZA=520128|archive-date = 2010-02-05|url-status = dead}}

The half-life of {{sup|209}}Bi was confirmed in 2012 by an Italian team in Gran Sasso who reported {{val|2.01|0.08|e=19}} years. They also reported an even longer half-life for alpha decay of {{sup|209}}Bi to the first excited state of {{sup|205}}Tl (at 204 keV), was estimated at 1.66{{e|21}} years.{{Cite journal|author=J.W. Beeman|display-authors=et al|date=2012|title=First Measurement of the Partial Widths of {{sup|209}}Bi Decay to the Ground and to the First Excited States|journal=Physical Review Letters |volume=108 |issue=6 |pages=062501|doi=10.1103/PhysRevLett.108.062501|pmid=22401058|arxiv=1110.3138|bibcode=2012PhRvL.108f2501B |s2cid=118686992 }} Even though this value is shorter than the half-life of {{sup|128}}Te, both alpha decays of {{sup|209}}Bi hold the record of the thinnest natural line widths of any measurable physical excitation, estimated respectively at ΔΕ~5.5×10{{sup|−43}} eV and ΔΕ~1.3×10{{sup|−44}} eV in application of the uncertainty principle{{Cite web|url=http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/parlif.html|title=Particle lifetimes from the uncertainty principle}} (double beta decay would produce energy lines only in neutrinoless transitions, which has not been observed yet).

Applications

Because all primordial bismuth is bismuth-209, bismuth-209 is used for all normal applications of bismuth, such as being used as a replacement for lead,{{cite journal|author=Hopper KD|author2=King SH|author3=Lobell ME|author4=TenHave TR|author5=Weaver JS|title= The breast: inplane x-ray protection during diagnostic thoracic CT—shielding with bismuth radioprotective garments|pmid=9393547|date=1997|volume=205|issue=3|pages=853–8|journal=Radiology|doi=10.1148/radiology.205.3.9393547}}{{cite web|first1 = Joachim |last1 = Lohse|first2 = Stéphanie |last2 = Zangl|first3=Rita|last3=Groß|first4=Carl-Otto|last4=Gensch|first5=Otmar|last5=Deubzer|url = http://ec.europa.eu/environment/waste/pdf/description_layout.pdf| access-date =11 September 2009|title = Adaptation to Scientific and Technical Progress of Annex II Directive 2000/53/EC|publisher=European Commission|date=September 2007}} in cosmetics,{{cite journal|doi = 10.1016/j.porgcoat.2005.07.003|title = Effect pigments—past, present and future|date = 2005|last1 = Maile|first1 = Frank J.|last2 = Pfaff|first2 = Gerhard|last3 = Reynders|first3 = Peter|journal = Progress in Organic Coatings|volume = 54|issue = 3|page = 150}}{{cite book|url = https://books.google.com/books?id=Q1Pc0aY-vg4C&pg=PA36| page = 36|title = Special effect pigments: Technical basics and applications|isbn = 978-3-86630-905-0|last1 = Pfaff|first1 = Gerhard|date = 2008|publisher=Vincentz Network GmbH}} in paints,B. Gunter "Inorganic Colored Pigments” in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2012. and in several medicines such as Pepto-Bismol.{{cite journal |vauthors=Madisch A, Morgner A, Stolte M, Miehlke S |date=December 2008 |title=Investigational treatment options in microscopic colitis |journal=Expert Opinion on Investigational Drugs |pmid=19012499 |doi=10.1517/13543780802514500 |volume=17 |issue=12 |pages=1829–37|s2cid=72294495 }}Merck Index, 11th Edition, 1299 Alloys containing bismuth-209 such as bismuth bronze have been used for thousands of years.{{cite journal|jstor=1692247 |title=Bismuth Bronze from Machu Picchu, Peru |publisher=American Association for the Advancement of Science |last1=Gordon |first1=Robert B. |last2=Rutledge |first2=John W. |journal=Science |year=1984 |volume=223 |issue=4636 |pages=585–586 |doi=10.1126/science.223.4636.585 |pmid=17749940 |bibcode=1984Sci...223..585G |s2cid=206572055 }}

=Synthesis of other elements=

Polonium-210 can be manufactured by bombarding {{sup|209}}Bi with neutrons in a nuclear reactor. Only around 100 grams of {{sup|210}}Po are produced each year.{{cite web |url = http://www.aljazeera.com/investigations/killing-arafat/swiss-study-polonium-found-arafats-bones-201311522578803512.html |title = Swiss study: Polonium found in Arafat's bones | publisher = Al Jazeera| access-date = 2013-11-07}}{{cite magazine |last=Roessler |first=G. |title=Why {{sup|210}}Po? |url=https://hps.org/documents/polonium_210_story.pdf |magazine=Health Physics News |publisher=Health Physics Society |date=2007 |volume=35 |issue=2 |access-date=2019-06-20 |archive-url=https://web.archive.org/web/20140403100938/http://hps.org/documents/polonium_210_story.pdf |archive-date=2014-04-03 |url-status=live }} Isotopes of polonium can be made through the proton bombardment of {{sup|209}}Bi in a cyclotron.{{Cite book| last1=Carvalho|first1=F.|last2=Fernandes|first2=S.|last3=Fesenko|first3=S. |last4=Holm|first4=E.|last5=Howard|first5=B.|last6=Martin|first6=P.|last7=Phaneuf|first7=P. |last8=Porcelli|first8=D.|last9=Pröhl|first9=G.|last10=Twining|first10=J.|title=The Environmental Behaviour of Polonium|series=Technical reports series|volume=484|publisher=International Atomic Energy Agency|location=Vienna|date=2017|page=22|issn=0074-1914|isbn=978-92-0-112116-5}} Astatine can also be produced by bombarding {{sup|209}}Bi with alpha particles.{{cite journal | title = Radioactivity of Astatine Isotopes | first1 = G. W. | last1 = Barton| year = 1951 | journal = Physical Review | volume = 82 | issue = 1 | pages = 13–19 | doi = 10.1103/PhysRev.82.13 | last2 = Ghiorso | first2 = A.| author-link2=Albert Ghiorso | last3 = Perlman | first3 = I.|bibcode = 1951PhRv...82...13B | hdl = 2027/mdp.39015086480574 | url = https://escholarship.org/uc/item/7q84d634 }} {{subscription required}}{{cite journal|last1=Larsen|first1=R. H.|last2=Wieland|first2=B. W.|last3=Zalutsky|first3=M. R. J.|year=1996|title=Evaluation of an Internal Cyclotron Target for the Production of {{sup|211}}At via the {{sup|209}}Bi (α,2n){{sup|211}}At reaction|journal=Applied Radiation and Isotopes|volume=47|issue=2|pages=135–143|doi=10.1016/0969-8043(95)00285-5|pmid=8852627}}{{cite journal | doi = 10.1070/RC1968v037n02ABEH001603 | title = Astatine | year = 1968 | last1= Nefedov | first1 = V. D. | journal = Russian Chemical Reviews | volume = 37 | pages = 87–98 | last2 = Norseev | first2 = Yu. V. | last3 = Toropova | first3 = M. A. | last4 = Khalkin | first4 = Vladimir A. | issue = 2|bibcode = 1968RuCRv..37...87N | s2cid = 250775410 }} {{subscription required}} Traces of {{sup|209}}Bi have also been used to create gold in nuclear reactors.

{{Cite journal

|last1=Aleklett |first1=K.

|last2=Morrissey |first2=D.

|last3=Loveland |first3=W.

|last4=McGaughey |first4=P.

|last5=Seaborg |first5=G.

|year=1981

|title=Energy dependence of {{sup|209}}Bi fragmentation in relativistic nuclear collisions

|journal=Physical Review C

|volume=23 |issue=3 |page=1044

|bibcode=1981PhRvC..23.1044A

|doi=10.1103/PhysRevC.23.1044

}}{{cite news |url=https://www.telegraph.co.uk/education/4791069/The-Philosophers-Stone.html |newspaper=The Daily Telegraph |first=Robert |last=Matthews |title=The Philosopher's Stone |date=2 December 2001 |access-date=22 September 2020 }}

{{sup|209}}Bi has been used as a target for the creation of several isotopes of superheavy elements such as dubnium,{{cite journal|title = Identification of element 107 by α correlation chains|author = Munzenberg| journal = Z. Phys. A|volume = 300|issue = 1|pages = 107–108|year = 1981| doi = 10.1007/BF01412623|last2 = Hofmann|first2 = S.|last3 = Heßberger|first3 = F. P.|last4 = Reisdorf|first4 = W.|last5 = Schmidt|first5 = K. H.|last6 = Schneider|first6 = J. H. R.|last7 = Armbruster|first7 = P.|last8 = Sahm|first8 = C. C.|last9 = Thuma|first9 = B.|bibcode=1981ZPhyA.300..107M|s2cid = 118312056}}{{cite journal|doi = 10.1007/BF01415134| title = The new isotopes {{sup|258}}105,{{sup|257}}105,{{sup|254}}Lr and {{sup|253}}Lr|last1 = Hessberger |first1=F. P. |journal = Z. Phys. A|year = 1985|volume = 322| issue = 4|page =4|last2 = Münzenberg|first2 = G.|last3 = Hofmann|first3 = S.|last4 = Agarwal|first4 = Y. K.|last5 = Poppensieker|first5 = K.|last6 = Reisdorf|first6 = W.|last7 = Schmidt|first7 = K.-H.|last8 = Schneider|first8 = J. R. H.|last9 = Schneider|first9 = W. F. W.| last10 = Schött| first10 = H. J.| last11 = Armbruster| first11 = P.| last12 = Thuma| first12 = B.| last13 = Sahm| first13 = C.-C.| last14 = Vermeulen| first14 = D.|bibcode=1985ZPhyA.322..557H| s2cid = 100784990}}{{cite journal| url = http://www.edpsciences.org/articles/epja/abs/2001/09/epja1103/epja1103.html| archive-url = https://web.archive.org/web/20020510050652/http://www.edpsciences.org/articles/epja/abs/2001/09/epja1103/epja1103.html| url-status = dead| archive-date = 2002-05-10| title = Decay properties of neutron-deficient isotopes {{sup|256,257}}Db,{{sup|255}}Rf, {{sup|252,253}}Lr| author = F. P. Hessberger| journal = Eur. Phys. J. A| volume = 12| issue = 1| pages = 57–67| year = 2001| doi = 10.1007/s100500170039| last2 = Hofmann| first2 = S.| last3 = Ackermann| first3 = D.| last4 = Ninov| first4 = V.| last5 = Leino| first5 = M.| last6 = Münzenberg| first6 = G.| last7 = Saro| first7 = S.| last8 = Lavrentev| first8 = A.| last9 = Popeko| first9 = A.G.| last10 = Yeremin| first10 = A.V.| last11 = Stodel| first11 = Ch.| bibcode = 2001EPJA...12...57H| s2cid = 117896888}}{{cite thesis |last1=Leppänen |first1=A.-P. |title=Alpha-decay and decay-tagging studies of heavy elements using the RITU separator |year=2005 |pages=83–100 |publisher=University of Jyväskylä |isbn=978-951-39-3162-9 |issn=0075-465X |url=https://jyx.jyu.fi/bitstream/handle/123456789/13915/978-951-39-3162-9.pdf?sequence=1&isAllowed=y}} bohrium,{{cite journal|last1=Nelson|first1=S.|last2=Gregorich|first2=K.|last3=Dragojević|first3=I.|last4=Garcia|first4=M.|last5=Gates|first5=J.|last6=Sudowe|first6=R.|last7=Nitsche|first7=H.|title=Lightest Isotope of Bh Produced via the Bi209(Cr52,n)Bh260 Reaction|journal=Physical Review Letters|volume=100|year=2008|doi=10.1103/PhysRevLett.100.022501|issue=2|pages=22501|bibcode=2008PhRvL.100b2501N|pmid=18232860|s2cid=1242390 }} meitnerium,

{{Cite journal

|last1=Münzenberg |first1=G.

|year=1982

|title=Observation of one correlated α-decay in the reaction {{sup|58}}Fe on {{sup|209}}Bi→{{sup|267}}109

|journal=Zeitschrift für Physik A

|volume=309 |issue=1 |pages=89–90

|bibcode=1982ZPhyA.309...89M

|doi=10.1007/BF01420157

|s2cid=120062541

|display-authors=etal}}{{Cite journal|last1=Münzenberg|first1=G.|last2=Hofmann|first2=S.|last3=Heßberger|first3=F. P.|last4=Folger|first4=H.|last5=Ninov|first5=V.|last6=Poppensieker|first6=K.|title=New results on element 109|year=1988|journal=Zeitschrift für Physik A |volume=330|issue=4|pages=435–436|doi=10.1007/BF01290131|bibcode=1988ZPhyA.330..435M|display-authors=3|last7=Quint|first7=A. B.|last8=Reisdorf|first8=W.|last9=Schött|first9=H. -J.|s2cid=121364541}}{{Cite journal |last1=Hofmann |first1=S. |last2=Heßberger |first2=F. P. |last3=Ninov |first3=V. |last4=Armbruster |first4=P. |last5=Münzenberg |first5=G. |last6=Stodel |first6=C. |last7=Popeko |first7=A. G. |last8=Yeremin |first8=A. V. |last9=Saro |first9=S.|title=Excitation function for the production of {{sup|265}}108 and {{sup|266}}109 |year=1997 |journal=Zeitschrift für Physik A |volume=358 |issue=4 |pages=377–378 |doi=10.1007/s002180050343 |bibcode=1997ZPhyA.358..377H |s2cid=124304673 |display-authors=3}} roentgenium,{{Cite journal |doi=10.1007/BF01291182 |title=The new element 111 |year=1995 |last1=Hofmann |first1=S. |journal=Zeitschrift für Physik A |volume=350 |pages=281–282 |last2=Ninov |first2=V. |last3=Heßberger |first3=F. P. |last4=Armbruster |first4=P. |last5=Folger |first5=H. |last6=Münzenberg |first6=G. |last7=Schött |first7=H. J. |last8=Popeko |first8=A. G. |last9=Yeremin |first9=A. V. |last10=Andreyev |first10=A. N. |last11=Saro |first11=S. |last12=Janik |first12=R. |last13=Leino |first13=M. |bibcode = 1995ZPhyA.350..281H |issue=4 |s2cid=18804192 |display-authors=8}}{{Cite journal |doi=10.1140/epja/i2001-10119-x |title=New results on elements 111 and 112 |year=2002 |last1=Hofmann |first1=S. |journal=The European Physical Journal A |volume=14 |pages=147–157 |last2=Heßberger |first2=F. P. |last3=Ackermann |first3=D. |last4=Münzenberg |first4=G. |last5=Antalic |first5=S. |last6=Cagarda |first6=P. |last7=Kindler |first7=B. |last8=Kojouharova |first8=J. |last9=Leino |first9=M. |last10=Lommel |first10=B. |last11=Mann |first11=R. |last12=Popeko |first12=A.G. |last13=Reshitko |first13=S. |last14=Śaro |first14=S. |last15=Uusitalo |first15=J. |last16=Yeremin |first16=A.V. |issue=2 |display-authors=8|bibcode=2002EPJA...14..147H |s2cid=8773326 }}{{cite journal |last1=Morita |first1=K. |last2=Morimoto |first2=K. K. |last3=Kaji |first3=D. |last4=Goto |first4=S. |last5=Haba |first5=H. |last6=Ideguchi |first6=E. |last7=Kanungo |first7=R. |last8=Katori |first8=K. |last9=Koura |first9=H. |last10=Kudo |first10=H. |last11=Ohnishi |first11=T. |last12=Ozawa |first12=A. |last13=Peter |first13=J. C. |last14=Suda |first14=T. |last15=Sueki |first15=K. |last16=Tanihata |first16=I. |last17=Tokanai |first17=F. |last18=Xu |first18=H. |last19=Yeremin |first19=A. V. |last20=Yoneda |first20=A. |last21=Yoshida |first21=A. |last22=Zhao |first22=Y.-L. |last23=Zheng |first23=T. |title=Status of heavy element research using GARIS at RIKEN |year=2004 |journal=Nuclear Physics A |volume=734 |pages=101–108 |doi=10.1016/j.nuclphysa.2004.01.019|bibcode=2004NuPhA.734..101M }} and nihonium.{{cite journal|title=Experiment on the Synthesis of Element 113 in the Reaction {{sup|209}}Bi({{sup|70}}Zn, n){{sup|278}}113|doi=10.1143/JPSJ.73.2593|year=2004|last1=Morita |first1=Kosuke |journal=Journal of the Physical Society of Japan |volume=73 |pages=2593–2596 |last2=Morimoto |first2=Kouji |last3=Kaji |first3=Daiya |last4=Akiyama |first4=Takahiro |last5=Goto |first5=Sin-Ichi |last6=Haba |first6=Hiromitsu |last7=Ideguchi |first7=Eiji |last8=Kanungo |first8=Rituparna |last9=Katori |first9=Kenji |last10=Koura |first10=Hiroyuki |last11=Kudo |first11=Hisaaki |last12=Ohnishi |first12=Tetsuya |last13=Ozawa |first13=Akira |last14=Suda |first14=Toshimi |last15=Sueki |first15=Keisuke |last16=Xu |first16=Hushan |last17=Yamaguchi |first17=Takayuki |last18=Yoneda |first18=Akira |last19=Yoshida |first19=Atsushi |last20=Zhao |first20=Yuliang |display-authors=8 |issue=10 |bibcode = 2004JPSJ...73.2593M |doi-access= }}{{cite journal |last1=Barber |first1=Robert C. |last2=Karol |first2=Paul J |last3=Nakahara |first3=Hiromichi |last4=Vardaci |first4=Emanuele |last5=Vogt |first5=Erich W. |title=Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)|doi=10.1351/PAC-REP-10-05-01 |journal=Pure and Applied Chemistry |year=2011 |volume=83|issue=7 |page=1485|doi-access=free }}{{cite journal|journal=Journal of the Physical Society of Japan|volume=81|pages=103201 |date=2012|title=New Results in the Production and Decay of an Isotope, {{sup|278}}113, of the 113th Element|author=K. Morita|doi=10.1143/JPSJ.81.103201|last2=Morimoto|first2=Kouji|last3=Kaji|first3=Daiya|last4=Haba|first4=Hiromitsu|last5=Ozeki|first5=Kazutaka|last6=Kudou|first6=Yuki|last7=Sumita|first7=Takayuki|last8=Wakabayashi|first8=Yasuo|last9=Yoneda|first9=Akira|first10=Kengo |last10=Tanaka|first11=Sayaka |last11=Yamaki|first12=Ryutaro |last12=Sakai|first13=Takahiro |last13=Akiyama|first14=Shin-ichi |last14=Goto|first15=Hiroo |last15=Hasebe|first16=Minghui |last16=Huang|first17=Tianheng |last17=Huang|first18=Eiji |last18=Ideguchi|first19=Yoshitaka |last19=Kasamatsu|first20=Kenji |last20=Katori|first21=Yoshiki |last21=Kariya|first22=Hidetoshi |last22=Kikunaga|first23=Hiroyuki |last23=Koura|first24=Hisaaki |last24=Kudo|first25=Akihiro |last25=Mashiko|first26=Keita |last26=Mayama|first27=Shin-ichi |last27=Mitsuoka|first28=Toru |last28=Moriya|first29=Masashi |last29=Murakami|first30=Hirohumi |last30=Murayama|first31=Saori |last31=Namai|first32=Akira |last32=Ozawa|first33=Nozomi |last33=Sato|first34=Keisuke |last34=Sueki|first35=Mirei |last35=Takeyama|first36=Fuyuki |last36=Tokanai|first37=Takayuki |last37=Yamaguchi|first38=Atsushi |last38=Yoshida

|issue=10|display-authors=10|arxiv = 1209.6431 |bibcode = 2012JPSJ...81j3201M |s2cid=119217928 }}

Formation

=Primordial=

File:S-R-processes-atomic-mass-201-to-210.svgs; blue arrows pointing up-left represent beta decays; green arrows pointing down-left represent alpha decays; cyan/light-green arrows pointing down-right represent electron captures.}}]]

In the red giant stars of the asymptotic giant branch, the s-process (slow process) is ongoing to produce bismuth-209 and polonium-210 by neutron capture as the heaviest elements to be formed, and the latter quickly decays. All elements heavier than it are formed in the r-process, or rapid process, which occurs during the first fifteen minutes of supernovas.Chaisson, Eric, and Steve McMillan. Astronomy Today. 6th ed. San Francisco: Pearson Education, 2008.

{{cite journal

|last1=Burbidge |first1=E. M.

|last2=Burbidge |first2=G. R.

|last3=Fowler |first3=W. A.

|last4=Hoyle |first4=F.

|date=1957

|title=Synthesis of the Elements in Stars

|journal=Reviews of Modern Physics

|volume=29 |issue=4 |pages=547–650

|bibcode=1957RvMP...29..547B

|doi=10.1103/RevModPhys.29.547 |doi-access=free

}} Bismuth-209 is also created during the r-process.

=Radiogenic=

Some {{sup|209}}Bi was created radiogenically from the neptunium decay chain.{{cite journal |last1=Peppard |first1=D. F. |last2=Mason |first2=G. W. |last3=Gray |first3=P. R. |last4=Mech |first4=J. F. |title=Occurrence of the (4n + 1) series in nature |journal=Journal of the American Chemical Society |date=1952 |volume=74 |issue=23 |pages=6081–6084 |doi=10.1021/ja01143a074 |url=https://digital.library.unt.edu/ark:/67531/metadc172698/m2/1/high_res_d/metadc172698.pdf }} Neptunium-237 is an extinct radionuclide, but it can be found in traces in uranium ores because of neutron capture reactions.{{cite book| author = C. R. Hammond| title = The Elements, in Handbook of Chemistry and Physics| edition = 81st| publisher = CRC press| isbn = 978-0-8493-0485-9| date = 2004| url-access = registration| url = https://archive.org/details/crchandbookofche81lide}} Americium-241, which is used in smoke detectors,{{cite journal | url = http://www.uic.com.au/nip35.htm | archive-url = https://web.archive.org/web/20080303223058/http://www.uic.com.au/nip35.htm

| archive-date = 2008-03-03 | url-status = usurped | title = Smoke Detectors and Americium | journal = Nuclear Issues Briefing Paper | publisher = Uranium Information Centre | volume = 35 | date = May 2002 | language = en-au | access-date = 2022-09-02 | df = dmy-all }} decays to neptunium-237.

See also

Notes

{{notelist}}

{{Isotope sequence

|element=bismuth

|lighter=bismuth-208

|heavier=bismuth-210

|before=astatine-213 (α)
polonium-209 (positron emission)
lead-209 (Beta decay#β− decay)

|after=thallium-205 (α)}}

References

{{Reflist}}

{{Authority control}}

Category:Bismuth

Category:Isotopes of bismuth