bundle of principal parts
In algebraic geometry, given a line bundle L on a smooth variety X, the bundle of n-th order principal parts of L is a vector bundle of rank that, roughly, parametrizes n-th order Taylor expansions of sections of L.
Precisely, let I be the ideal sheaf defining the diagonal embedding and the restrictions of projections to . Then the bundle of n-th order principal parts is{{harvnb|Fulton|1998|loc=Example 2.5.6.}}
:
Then and there is a natural exact sequence of vector bundles{{harvnb|SGA 6|1971|loc=Exp II, Appendix II 1.2.4.}}
:
where is the sheaf of differential one-forms on X.
See also
- Linear system of divisors (bundles of principal parts can be used to study the oscillating behaviors of a linear system.)
- Jet (mathematics) (a closely related notion)
References
{{Reflist}}
- {{Citation | title=Intersection theory | publisher=Springer-Verlag | location=Berlin, New York | series=Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. | isbn=978-3-540-62046-4 | mr=1644323 | year=1998 | volume=2 | edition=2nd |first=William |last=Fulton}}
- Appendix II of Exp II of {{cite book
| editor-last = Berthelot
| editor-first = Pierre
| editor-link = Pierre Berthelot (mathematician)
| editor2=Alexandre Grothendieck
| editor3=Luc Illusie
| title = Séminaire de Géométrie Algébrique du Bois Marie - 1966-67 - Théorie des intersections et théorème de Riemann-Roch - (SGA 6) (Lecture notes in mathematics 225)
| year = 1971
| volume = 225
| publisher = Springer-Verlag
| location = Berlin; New York
| language = fr
| pages = xii+700
| no-pp = true
|doi=10.1007/BFb0066283
|isbn= 978-3-540-05647-8
| mr = 0354655
| ref={{harvid|SGA 6|1971}}
}}
{{algebraic-geometry-stub}}