circular law

In probability theory, more specifically the study of random matrices, the circular law concerns the distribution of eigenvalues of an n \times n random matrix with independent and identically distributed entries in the limit

n \to \infty.

It asserts that for any sequence of random matrices whose entries are independent and identically distributed random variables, all with mean zero and variance equal to {{math|1/n}}, the limiting spectral distribution is the uniform distribution over the unit disc.

Ginibre ensembles

The complex Ginibre ensemble is defined as X = \frac{1}{\sqrt{2}} Z_1+\frac{i}{\sqrt{2}} Z_2 for Z_1, Z_2 \in \R^{n \times n} , with all their entries sampled IID from the standard normal distribution \mathcal N (0, 1) .

The real Ginibre ensemble is defined as X = Z_1.

Eigenvalues

The eigenvalues of X are distributed according to{{cite arXiv |last=Meckes |first=Elizabeth |title=The Eigenvalues of Random Matrices |date=2021-01-08 |class=math.PR |eprint=2101.02928}}\rho_n\left(z_1, \ldots, z_n\right)=\frac{1}{\pi^n \prod_{k=1}^n k!} \exp \left(-\sum_{k=1}^n\left|z_k\right|^2\right) \prod_{1 \leq jFile:CircleLaw.png

Global law

Let (X_n)_{n=1}^\infty be a sequence sampled from the complex Ginibre ensemble. Let \lambda_1, \ldots, \lambda_n, 1 \leq j \leq n denote the eigenvalues of \frac{1}{\sqrt{n}}X_n . Define the empirical spectral measure of \displaystyle \frac{1}{\sqrt{n}} X_n as

: \mu_{\frac{1}{\sqrt{n}} X_n}(A) = n^{-1} \#\{j \leq n : \lambda_j \in A \}~, \quad A \in \mathcal{B}(\mathbb{C}).

Then, almost surely (i.e. with probability one), the sequence of measures \displaystyle \mu_{\frac{1}{\sqrt{n}} X_n} converges in distribution to the uniform measure on the unit disk.

Edge statistics

Let G_n be sampled from the real or complex ensemble, and let \rho(G_n) be the absolute value of its maximal eigenvalue:\rho(G_n) := \max_j |\lambda_j|We have the following theorem for the edge statistics:{{Cite journal |last=Rider |first=B |date=2003-03-28 |title=A limit theorem at the edge of a non-Hermitian random matrix ensemble |url=https://iopscience.iop.org/article/10.1088/0305-4470/36/12/331 |journal=Journal of Physics A: Mathematical and General |volume=36 |issue=12 |pages=3401–3409 |doi=10.1088/0305-4470/36/12/331 |bibcode=2003JPhA...36.3401R |issn=0305-4470|url-access=subscription }}{{Math theorem

| math_statement = For G_n and \rho\left(G_n\right) as above, with probability one,

\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}} \rho\left(G_n\right)=1

Moreover, if \gamma_n=\log \left(\frac{n}{2 \pi}\right)-2 \log (\log (n)) and

Y_n:=\sqrt{4 n \gamma_n}\left(\frac{1}{\sqrt{n}} \rho\left(G_n\right)-1-\sqrt{\frac{\gamma_n}{4 n}}\right),

then Y_n converges in distribution to the Gumbel law, i.e., the probability measure on \mathbb{R} with cumulative distribution function F_{\mathrm{Gum}}(x)=e^{-e^{-x}}.

| name = Edge statistics of the Ginibre ensemble

| note =

}}

This theorem refines the circular law of the Ginibre ensemble. In words, the circular law says that the spectrum of \frac{1}{\sqrt{n}} G_n almost surely falls uniformly on the unit disc. and the edge statistics theorem states that the radius of the almost-unit-disk is about 1-\sqrt{\frac{\gamma_n}{4 n}}, and fluctuates on a scale of \frac{1}{\sqrt{4 n \gamma_n}}, according to the Gumbel law.

History

For random matrices with Gaussian distribution of entries (the Ginibre ensembles), the circular law was established in the 1960s by Jean Ginibre.{{cite journal|last=Ginibre|first=Jean|title=Statistical ensembles of complex, quaternion, and real matrices|journal=J. Math. Phys.|year=1965|volume=6|issue=3 |pages=440–449|doi=10.1063/1.1704292|mr=0173726|bibcode=1965JMP.....6..440G}} In the 1980s, Vyacheslav Girko introduced{{cite journal|last=Girko|first=V.L.|title=The circular law|journal=Teoriya Veroyatnostei i ee Primeneniya|year=1984|volume=29|issue=4|pages=669–679}} an approach which allowed to establish the circular law for more general distributions. Further progress was made{{cite journal|last=Bai|first=Z.D.|title=Circular law|journal=Annals of Probability|year=1997|volume=25|issue=1|pages=494–529|doi=10.1214/aop/1024404298|mr=1428519|doi-access=free}} by Zhidong Bai, who established the circular law under certain smoothness assumptions on the distribution.

The assumptions were further relaxed in the works of Terence Tao and Van H. Vu,{{cite journal|last1=Tao|first1=T.|last2=Vu|first2=V.H.|title=Random matrices: the circular law.|journal=Commun. Contemp. Math.|year=2008|volume=10|issue=2|pages=261–307|doi=10.1142/s0219199708002788|mr=2409368|arxiv=0708.2895|s2cid=15888373 }} Guangming Pan and Wang Zhou,{{cite journal|last1=Pan|first1=G.|last2=Zhou|first2=W.|title=Circular law, extreme singular values and potential theory.|journal=J. Multivariate Anal.|year=2010|volume=101|issue=3|pages=645–656|doi=10.1016/j.jmva.2009.08.005|arxiv=0705.3773|s2cid=7475359 }} and Friedrich Götze and Alexander Tikhomirov.{{cite journal|last1=Götze|first1=F.|last2=Tikhomirov|first2=A.|title=The circular law for random matrices|journal=Annals of Probability|year=2010|volume=38|issue=4|pages=1444–1491|doi=10.1214/09-aop522|mr=2663633|arxiv=0709.3995|s2cid=1290255 }} Finally, in 2010 Tao and Vu proved{{cite journal|last1=Tao|first1=Terence|author1-link=Terence Tao|last2=Vu|first2=Van|author2-link=Van Vu|title=Random matrices: Universality of ESD and the Circular Law|others=appendix by Manjunath Krishnapur|journal=Annals of Probability|volume=38|issue=5|year=2010|pages=2023–2065|arxiv=0807.4898|doi=10.1214/10-AOP534|mr=2722794|s2cid=15769353 }} the circular law under the minimal assumptions stated above.

The circular law result was extended in 1985 by Girko{{cite journal|last=Girko|first=V.L.|title=The elliptic law|journal=Teoriya Veroyatnostei i ee Primeneniya|year=1985|volume=30|pages=640–651}} to an elliptical law for ensembles of matrices with a fixed amount of correlation between the entries above and below the diagonal. The elliptic and circular laws were further generalized by Aceituno, Rogers and Schomerus to the hypotrochoid law which includes higher order correlations.{{cite journal|last1=Aceituno|first1=P.V.|last2=Rogers|first2=T.|last3=Schomerus|first3=H.|title=Universal hypotrochoidic law for random matrices with cyclic correlations.|journal=Physical Review E|year=2019|volume=100|issue=1|pages=010302|doi=10.1103/PhysRevE.100.010302 |pmid=31499759 |arxiv=1812.07055 |bibcode=2019PhRvE.100a0302A |s2cid=119325369 }}

See also

References

{{Reflist}}

{{DEFAULTSORT:Circular Law}}

Category:Random matrices