classification of low-dimensional real Lie algebras

{{Multiple issues|

{{Prose|date=September 2023}}

{{Context|date=September 2023}}

}}

This mathematics-related list provides Mubarakzyanov's classification of low-dimensional real Lie algebras, published in Russian in 1963.{{harvnb|Mubarakzyanov|1963}} It complements the article on Lie algebra in the area of abstract algebra.

An English version and review of this classification was published by Popovych et al.{{harvnb|Popovych|2003}} in 2003.

Mubarakzyanov's Classification

Let {\mathfrak g}_n be n-dimensional Lie algebra over the field of real numbers

with generators e_1, \dots, e_n , n \leq 4.{{clarify|Here and the in the below, I’m not completely sure how the notations work|date=December 2018}} For each algebra {\mathfrak g} we adduce only non-zero commutators between basis elements.

= One-dimensional =

= Two-dimensional =

  • 2{\mathfrak g}_1, abelian \mathbb{R}^2;
  • {\mathfrak g}_{2.1}, solvable \mathfrak{aff}(1)=\left\{\begin{pmatrix} a&b \\ 0&0 \end{pmatrix}\,:\,a,b\in\mathbb{R}\right\},

:: [e_1, e_2] = e_1.

= Three-dimensional =

  • 3{\mathfrak g}_1, abelian, Bianchi I;
  • {\mathfrak g}_{2.1}\oplus {\mathfrak g}_1 , decomposable solvable, Bianchi III;
  • {\mathfrak g}_{3.1}, Heisenberg–Weyl algebra, nilpotent, Bianchi II,

:: [e_2, e_3] = e_1;

  • {\mathfrak g}_{3.2}, solvable, Bianchi IV,

:: [e_1, e_3] = e_1, \quad [e_2, e_3] = e_1 + e_2;

  • {\mathfrak g}_{3.3}, solvable, Bianchi V,

:: [e_1, e_3] = e_1, \quad [e_2, e_3] = e_2;

  • {\mathfrak g}_{3.4}, solvable, Bianchi VI, Poincaré algebra \mathfrak{p}(1,1) when \alpha = -1,

:: [e_1, e_3] = e_1, \quad [e_2, e_3] = \alpha e_2, \quad -1 \leq \alpha < 1, \quad \alpha \neq 0;

  • {\mathfrak g}_{3.5}, solvable, Bianchi VII,

:: [e_1, e_3] = \beta e_1 - e_2, \quad [e_2, e_3] = e_1 + \beta e_2, \quad \beta \geq 0;

  • {\mathfrak g}_{3.6}, simple, Bianchi VIII, \mathfrak{sl}(2, \mathbb R ),

:: [e_1, e_2] = e_1, \quad [e_2, e_3] = e_3, \quad [e_1, e_3] = 2 e_2;

  • {\mathfrak g}_{3.7}, simple, Bianchi IX, \mathfrak{so}(3),

:: [e_2, e_3] = e_1, \quad [e_3, e_1] = e_2, \quad [e_1, e_2] = e_3.

Algebra {\mathfrak g}_{3.3} can be considered as an extreme case of {\mathfrak g}_{3.5}, when \beta \rightarrow \infty , forming contraction of Lie algebra.

Over the field {\mathbb C} algebras {\mathfrak g}_{3.5}, {\mathfrak g}_{3.7} are isomorphic to {\mathfrak g}_{3.4} and {\mathfrak g}_{3.6}, respectively.

= Four-dimensional =

  • 4{\mathfrak g}_1, abelian;
  • {\mathfrak g}_{2.1} \oplus 2{\mathfrak g}_1, decomposable solvable,

:: [e_1, e_2] = e_1;

  • 2{\mathfrak g}_{2.1}, decomposable solvable,

:: [e_1, e_2] = e_1 \quad [e_3, e_4] = e_3;

  • {\mathfrak g}_{3.1} \oplus {\mathfrak g}_1, decomposable nilpotent,

:: [e_2, e_3] = e_1;

  • {\mathfrak g}_{3.2} \oplus {\mathfrak g}_1, decomposable solvable,

:: [e_1, e_3] = e_1, \quad [e_2, e_3] = e_1 + e_2;

  • {\mathfrak g}_{3.3} \oplus {\mathfrak g}_1, decomposable solvable,

:: [e_1, e_3] = e_1, \quad [e_2, e_3] = e_2;

  • {\mathfrak g}_{3.4} \oplus {\mathfrak g}_1, decomposable solvable,

:: [e_1, e_3] = e_1, \quad [e_2, e_3] = \alpha e_2, \quad -1 \leq \alpha < 1, \quad \alpha \neq 0;

  • {\mathfrak g}_{3.5} \oplus {\mathfrak g}_1, decomposable solvable,

:: [e_1, e_3] = \beta e_1 - e_2 \quad [e_2, e_3] = e_1 + \beta e_2, \quad \beta \geq 0;

  • {\mathfrak g}_{3.6} \oplus {\mathfrak g}_1, unsolvable,

:: [e_1, e_2] = e_1, \quad [e_2, e_3] = e_3, \quad [e_1, e_3] = 2 e_2;

  • {\mathfrak g}_{3.7} \oplus {\mathfrak g}_1, unsolvable,

:: [e_1, e_2] = e_3, \quad [e_2, e_3] = e_1, \quad [e_3, e_1] = e_2;

  • {\mathfrak g}_{4.1} , indecomposable nilpotent,

:: [e_2, e_4] = e_1, \quad [e_3, e_4] = e_2;

  • {\mathfrak g}_{4.2} , indecomposable solvable,

:: [e_1, e_4] = \beta e_1, \quad [e_2, e_4] = e_2, \quad [e_3, e_4] = e_2 + e_3, \quad \beta \neq 0;

  • {\mathfrak g}_{4.3} , indecomposable solvable,

:: [e_1, e_4] = e_1, \quad [e_3, e_4] = e_2;

  • {\mathfrak g}_{4.4} , indecomposable solvable,

:: [e_1, e_4] = e_1, \quad [e_2, e_4] = e_1 + e_2, \quad [e_3, e_4] = e_2+e_3;

  • {\mathfrak g}_{4.5} , indecomposable solvable,

:: [e_1, e_4] = \alpha e_1, \quad [e_2, e_4] = \beta e_2, \quad [e_3, e_4] = \gamma e_3, \quad \alpha \beta \gamma \neq 0;

  • {\mathfrak g}_{4.6} , indecomposable solvable,

:: [e_1, e_4] = \alpha e_1, \quad [e_2, e_4] = \beta e_2 - e_3, \quad [e_3, e_4] = e_2 + \beta e_3, \quad \alpha > 0;

  • {\mathfrak g}_{4.7} , indecomposable solvable,

:: [e_2, e_3] = e_1, \quad [e_1, e_4] = 2 e_1, \quad [e_2, e_4] = e_2, \quad [e_3, e_4] = e_2 + e_3;

  • {\mathfrak g}_{4.8} , indecomposable solvable,

:: [e_2, e_3] = e_1, \quad [e_1, e_4] = (1 + \beta)e_1, \quad [e_2, e_4] = e_2, \quad [e_3, e_4] = \beta e_3, \quad -1 \leq \beta \leq 1;

  • {\mathfrak g}_{4.9} , indecomposable solvable,

:: [e_2, e_3] = e_1, \quad [e_1, e_4] = 2 \alpha e_1, \quad [e_2, e_4] = \alpha e_2 - e_3, \quad [e_3, e_4] = e_2 + \alpha e_3, \quad \alpha \geq 0;

  • {\mathfrak g}_{4.10} , indecomposable solvable,

:: [e_1, e_3] = e_1, \quad [e_2, e_3] = e_2, \quad [e_1, e_4] = -e_2, \quad [e_2, e_4] = e_1.

Algebra {\mathfrak g}_{4.3} can be considered as an extreme case of {\mathfrak g}_{4.2}, when \beta \rightarrow 0 , forming contraction of Lie algebra.

Over the field {\mathbb C} algebras {\mathfrak g}_{3.5} \oplus {\mathfrak g}_1, {\mathfrak g}_{3.7} \oplus {\mathfrak g}_1, {\mathfrak g}_{4.6}, {\mathfrak g}_{4.9}, {\mathfrak g}_{4.10} are isomorphic to {\mathfrak g}_{3.4} \oplus {\mathfrak g}_1, {\mathfrak g}_{3.6} \oplus {\mathfrak g}_1, {\mathfrak g}_{4.5}, {\mathfrak g}_{4.8}, {2\mathfrak g}_{2.1}, respectively.

See also

Notes

{{Reflist}}

References

  • {{cite journal

| last1=Mubarakzyanov

| first1=G.M.

| title=On solvable Lie algebras

| journal=Izv. Vys. Ucheb. Zaved. Matematika

| volume=1

| issue=32

| year=1963

| pages=114–123

| mr=153714

| zbl=0166.04104

| url=http://mi.mathnet.ru/eng/ivm2141

| language=Russian

}}

  • {{cite journal

| last1=Popovych

| first1=R.O.

| last2=Boyko

| first2=V.M.

| last3=Nesterenko

| first3=M.O.

| last4=Lutfullin

| first4=M.W.

| display-authors=etal

| title=Realizations of real low-dimensional Lie algebras

| journal=J. Phys. A: Math. Gen.

| volume=36

| issue=26

| year=2003

| pages=7337–7360

| doi=10.1088/0305-4470/36/26/309

| arxiv=math-ph/0301029

| bibcode=2003JPhA...36.7337P

| s2cid=9800361 |ref={{harvid|Popovych|2003}}

}}

Category:Lie algebras

Category:Mathematics-related lists

Category:Mathematical classification systems