collision frequency
{{Short description|Physics calculation for collisions}}
{{Main|Collision theory}}
Collision frequency describes the rate of collisions between two atomic or molecular species in a given volume, per unit time. In an ideal gas, assuming that the species behave like hard spheres, the collision frequency between entities of species A and species B is:[https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Kinetics/Modeling_Reaction_Kinetics/Collision_Theory/Collision_Frequency chem.libretexts.org: Collision Frequency]
:
which has units of [volume][time]−1.
Here,
- is the number of A molecules in the gas,
- is the number of B molecules in the gas,
- is the collision cross section, the "effective area" seen by two colliding molecules, simplified to , where the radius of A and the radius of B.
- is the Boltzmann constant,
- is the temperature,
- is the reduced mass of the reactants A and B,
Collision in diluted solution
In the case of equal-size particles at a concentration in a solution of viscosity , an expression for collision frequency where is the volume in question, and is the number of collisions per second, can be written as:{{Cite journal|last=Debye|first=P.|date=1942|title=Reaction Rates in Ionic Solutions|url=https://doi.org/10.1149/1.3071413|journal=Transactions of the Electrochemical Society|language=en|volume=82|issue=1|pages=265|doi=10.1149/1.3071413|issn=0096-4743}}
:
Where:
- is the Boltzmann constant
- is the absolute temperature (unit K)
- is the viscosity of the solution (pascal seconds)
- is the concentration of particles per cm3
Here the frequency is independent of particle size, a result noted as counter-intuitive. For particles of different size, more elaborate expressions can be derived for estimating .