conductor-discriminant formula

In mathematics, the conductor-discriminant formula or Führerdiskriminantenproduktformel, introduced by {{harvs|txt|authorlink=Helmut Hasse|last=Hasse|year1=1926|year2=1930}} for abelian extensions and by {{harvs|txt|authorlink=Emil Artin|last=Artin|year=1931}} for Galois extensions, is a formula calculating the relative discriminant of a finite Galois extension L/K of local or global fields from the Artin conductors of the irreducible characters \mathrm{Irr}(G) of the Galois group G = G(L/K).

Statement

Let L/K be a finite Galois extension of global fields with Galois group G. Then the discriminant equals

:: \mathfrak{d}_{L/K} = \prod_{\chi \in \mathrm{Irr}(G)}\mathfrak{f}(\chi)^{\chi(1)},

where \mathfrak{f}(\chi) equals the global Artin conductor of \chi.{{sfn|Neukirch|1999|loc=VII.11.9}}

Example

Let L = \mathbf{Q}(\zeta_{p^n})/\mathbf{Q} be a cyclotomic extension of the rationals. The Galois group G equals (\mathbf{Z}/p^n)^\times. Because (p) is the only finite prime ramified, the global Artin conductor \mathfrak{f}(\chi) equals the local one \mathfrak{f}_{(p)}(\chi). Because G is abelian, every non-trivial irreducible character \chi is of degree 1 = \chi(1). Then, the local Artin conductor of \chi equals the conductor of the \mathfrak{p}-adic completion of L^\chi = L^{\mathrm{ker}(\chi)}/\mathbf{Q}, i.e. (p)^{n_p}, where n_p is the smallest natural number such that U_{\mathbf{Q}_p}^{(n_p)} \subseteq N_{L^\chi_\mathfrak{p}/\mathbf{Q}_p}(U_{L^\chi_\mathfrak{p}}). If p > 2, the Galois group G(L_\mathfrak{p}/\mathbf{Q}_p) = G(L/\mathbf{Q}) = (\mathbf{Z}/p^n)^\times is cyclic of order \varphi(p^n), and by local class field theory and using that U_{\mathbf{Q}_p}/U^{(k)}_{\mathbf{Q}_p} = (\mathbf{Z}/p^k)^\times one sees easily that if \chi factors through a primitive character of (\mathbf{Z}/p^i)^\times, then \mathfrak{f}_{(p)}(\chi) = p^i whence as there are \varphi(p^i) - \varphi(p^{i-1}) primitive characters of (\mathbf{Z}/p^i)^\times we obtain from the formula \mathfrak{d}_{L/\mathbf{Q}} = (p^{\varphi(p^n)(n - 1/(p-1))}), the exponent is

:: \sum_{i = 0}^{n} (\varphi(p^i) - \varphi(p^{i-1}))i = n\varphi(p^n) - 1 - (p-1)\sum_{i=0}^{n-2}p^i = n\varphi(p^n) - p^{n-1}.

Notes

References

  • {{Citation | last1=Artin | first1=Emil | author1-link=Emil Artin | title=Die gruppentheoretische Struktur der Diskriminanten algebraischer Zahlkörper. | url=http://resolver.sub.uni-goettingen.de/purl?GDZPPN002171422 | language=German | doi=10.1515/crll.1931.164.1 | zbl= 0001.00801 | year=1931 | journal=Journal für die Reine und Angewandte Mathematik | issn=0075-4102 | volume=1931 | issue=164 | pages=1–11| s2cid=117731518 | url-access=subscription }}
  • {{Citation | last1=Hasse | first1=H. | author1-link=Helmut Hasse | title=Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper. I: Klassenkörpertheorie. | url=http://resolver.sub.uni-goettingen.de/purl?GDZPPN002127768 | language=German | year=1926 | journal=Jahresbericht der Deutschen Mathematiker-Vereinigung | volume=35 | pages=1–55}}
  • {{Citation | last1=Hasse | first1=H. | author1-link=Helmut Hasse | title=Führer, Diskriminante und Verzweigungskörper relativ-Abelscher Zahlkörper. | url=http://resolver.sub.uni-goettingen.de/purl?GDZPPN002171198 | language=German | doi=10.1515/crll.1930.162.169 | year=1930 | journal=Journal für die reine und angewandte Mathematik | issn=0075-4102 | volume=1930 | issue=162 | pages=169–184| s2cid=199546442 | url-access=subscription }}
  • {{Neukirch ANT}}

Category:Algebraic number theory