contact type

{{short description|Symplectic manifold hypersurface}}

In mathematics, more precisely in symplectic geometry, a hypersurface \Sigma of a symplectic manifold (M,\omega) is said to be of contact type if there is 1-form \alpha such that j^{*}(\omega)=d\alpha and (\Sigma,\alpha) is a contact manifold, where j: \Sigma \to M is the natural inclusion.{{sfnm|1a1=Blair|1y=2010|1p=29|2a1=McDuff|2a2=Salamon|2y=2017|2loc=Definition 3.5.32}} The terminology was first coined by Alan Weinstein.

See also

References

{{reflist}}

  • {{cite book|last1=Blair|first1=David E.|title=Riemannian geometry of contact and symplectic manifolds|edition=Second edition of 2002 original|series=Progress in Mathematics|volume=203|publisher=Birkhäuser Boston, Ltd.|location=Boston, MA|year=2010|mr=2682326|isbn=978-0-8176-4958-6|doi=10.1007/978-0-8176-4959-3|zbl=1246.53001}}
  • {{cite book|last1=McDuff|first1=Dusa|last2=Salamon|first2=Dietmar|title=Introduction to symplectic topology|edition=Third edition of 1995 original|series=Oxford Graduate Texts in Mathematics|publisher=Oxford University Press|location=Oxford|year=2017|isbn=978-0-19-879490-5|mr=3674984|author-link1=Dusa McDuff|author-link2=Dietmar Salamon|zbl=1380.53003|doi=10.1093/oso/9780198794899.001.0001}}

Category:Symplectic geometry

{{differential-geometry-stub}}