de Gua's theorem

{{short description|Three-dimensional analog of the Pythagorean theorem}}

File:De_gua_theorem_1.svg

In mathematics, De Gua's theorem is a three-dimensional analog of the Pythagorean theorem named after Jean Paul de Gua de Malves. It states that if a tetrahedron has a right-angle corner (like the corner of a cube), then the square of the area of the face opposite the right-angle corner is the sum of the squares of the areas of the other three faces:

A_{ABC}^2 = A_{\color {blue} ABO}^2+A_{\color {green} ACO}^2+A_{\color {red} BCO}^2 De Gua's theorem can be applied for proving a special case of Heron's formula.{{cite journal |last1=Lévy-Leblond |first1=Jean-Marc |year=2020 |title=The Theorem of Cosines for Pyramids |url=https://doi.org/10.1007/s00283-020-09996-8 |journal=The Mathematical Intelligencer |publisher=SpringerLink|doi=10.1007/s00283-020-09996-8 |s2cid=224956341 |doi-access=free }}

Generalizations

The Pythagorean theorem and de Gua's theorem are special cases ({{math|1=n = 2, 3}}) of a general theorem about n-simplices with a right-angle corner, proved by P. S. Donchian and H. S. M. Coxeter in 1935.{{cite journal |last1=Donchian |first1=P. S. |last2=Coxeter |first2=H. S. M. |date=July 1935 |title=1142. An n-dimensional extension of Pythagoras' Theorem |journal=The Mathematical Gazette |volume=19 |issue=234 |pages=206 |doi=10.2307/3605876|jstor=3605876 |s2cid=125391795 }} This, in turn, is a special case of a yet more general theorem by Donald R. Conant and William A. Beyer (1974),{{cite journal |doi=10.2307/2319528 |title=Generalized Pythagorean Theorem |author1=Donald R Conant |author2=William A Beyer |name-list-style=amp |journal=The American Mathematical Monthly |volume=81 |date=Mar 1974 |pages=262–265 |jstor=2319528 |issue=3 |publisher=Mathematical Association of America }} which can be stated as follows.

Let U be a measurable subset of a k-dimensional affine subspace of \mathbb{R}^n (so k \le n). For any subset I \subseteq \{ 1, \ldots, n \} with exactly k elements, let U_I be the orthogonal projection of U onto the linear span of e_{i_1}, \ldots, e_{i_k}, where I = \{i_1, \ldots, i_k\} and e_1, \ldots, e_n is the standard basis for \mathbb{R}^n. Then

\operatorname{vol}_k^2(U) = \sum_I \operatorname{vol}_k^2(U_I),

where \operatorname{vol}_k(U) is the k-dimensional volume of U and the sum is over all subsets I \subseteq \{ 1, \ldots, n \} with exactly k elements.

De Gua's theorem and its generalisation (above) to n-simplices with right-angle corners correspond to the special case where k = n−1 and U is an (n−1)-simplex in \mathbb{R}^n with vertices on the co-ordinate axes. For example, suppose {{math|1=n = 3}}, {{math|1=k = 2}} and U is the triangle \triangle ABC in \mathbb{R}^3 with vertices A, B and C lying on the x_1-, x_2- and x_3-axes, respectively. The subsets I of \{ 1, 2, 3 \} with exactly 2 elements are \{ 2,3 \}, \{ 1,3 \} and \{ 1,2 \}. By definition, U_{\{ 2,3 \}} is the orthogonal projection of U = \triangle ABC onto the x_2 x_3-plane, so U_{\{ 2,3 \}} is the triangle \triangle OBC with vertices O, B and C, where O is the origin of \mathbb{R}^3. Similarly, U_{\{ 1,3 \}} = \triangle AOC and U_{\{ 1,2 \}} = \triangle ABO, so the Conant–Beyer theorem says

\operatorname{vol}_2^2(\triangle ABC) = \operatorname{vol}_2^2(\triangle OBC) + \operatorname{vol}_2^2(\triangle AOC) + \operatorname{vol}_2^2(\triangle ABO),

which is de Gua's theorem.

The generalisation of de Gua's theorem to n-simplices with right-angle corners can also be obtained as a special case from the Cayley–Menger determinant formula.

De Gua's theorem can also be generalized to arbitrary tetrahedra and to pyramids, similarly to how the law of cosines generalises Pythagoras' theorem.{{cite journal |last1=Kheyfits |first1=Alexander |year=2004 |title=The Theorem of Cosines for Pyramids |journal=The College Mathematics Journal |publisher=Mathematical Association of America |volume=35 |issue=5 |pages=385–388 |doi=10.2307/4146849 |jstor=4146849}}{{Cite journal |last=Tran |first=Quang Hung |date=2023-08-02 |title=A Generalization of de Gua's Theorem with a Vector Proof |url=https://link.springer.com/10.1007/s00283-023-10288-0 |journal=The Mathematical Intelligencer |language=en |doi=10.1007/s00283-023-10288-0 |issn=0343-6993}}

History

Jean Paul de Gua de Malves (1713–1785) published the theorem in 1783, but around the same time a slightly more general version was published by another French mathematician, Charles de Tinseau d'Amondans (1746–1818), as well. However the theorem had also been known much earlier to Johann Faulhaber (1580–1635) and René Descartes (1596–1650).{{MathWorld|title=de Gua's theorem|urlname=deGuasTheorem}}Howard Whitley Eves: Great Moments in Mathematics (before 1650). Mathematical Association of America, 1983, {{ISBN|9780883853108}}, S. 37 ({{Google books|9_w5jDPTvCQC|excerpt|page=37}})

See also

Notes

References

  • Sergio A. Alvarez: [http://www.cs.bc.edu/~alvarez/NDPyt.pdf Note on an n-dimensional Pythagorean theorem], Carnegie Mellon University.
  • {{cite journal |last1=Hull |first1=Lewis |last2=Perfect |first2=Hazel |last3=Heading |first3=J. |year=1978 |title=62.23 Pythagoras in Higher Dimensions: Three Approaches |journal=Mathematical Gazette |volume=62 |number=421 |pages=206–211 |jstor=3616695 |doi=10.2307/3616695 |s2cid=187356402 }}
  • {{MathWorld|title=de Gua's theorem|urlname=deGuasTheorem}}

{{DEFAULTSORT:De Gua'S Theorem}}

Category:Theorems about polyhedron

Category:Theorems in geometry

Category:Euclidean geometry