demiregular tiling
In geometry, the demiregular tilings are a set of Euclidean tessellations made from 2 or more regular polygon faces. Different authors have listed different sets of tilings. A more systematic approach looking at symmetry orbits are the 2-uniform tilings of which there are 20. Some of the demiregular ones are actually 3-uniform tilings.
20 2-uniform tilings
Grünbaum and Shephard enumerated the full list of 20 2-uniform tilings in Tilings and patterns, 1987:
class=wikitable
|+ 2-uniform tilings |
align=center valign=top
|cmm, 2*22 |cmm, 2*22 |pmm, *2222 |cmm, 2*22 |cmm, 2*22 |pmm, *2222 |pmm, *2222 |
align=center valign=top
|p4m, *442 |p4g, 4*2 |pgg, 2× |p6m, *632 |p6m, *632 |p6, 632 |cmm, 2*22 |
align=center valign=top
|p6m, *632 |p6m, *632 |p6m, *632 |p6m, *632 |p6m, *632 |p6m, *632 |
Ghyka's list (1946)
Ghyka lists 10 of them with 2 or 3 vertex types, calling them semiregular polymorph partitions.Ghyka (1946) pp. 73-80
class=wikitable
| | |
align=center valign=top
|Plate XXVII |No. 13 |No. 13 bis. |No. 13 ter. |Plate XXIV |
align=center valign=top
| | | |
align=center valign=top
|No. 14 |Plate XXVI |No. 14 ter. |No. 15 |Plate XXV |
Steinhaus's list (1969)
Steinhaus gives 5 examples of non-homogeneous tessellations of regular polygons beyond the 11 regular and semiregular ones.Steinhaus, 1969, p.79-82. (All of them have 2 types of vertices, while one is 3-uniform.)
class=wikitable
!colspan=4|2-uniform !3-uniform |
120px |
align=center
|Image 85 |Image 86 |Image 87 |Image 89 |Image 88 |
Critchlow's list (1970)
Critchlow identifies 14 demi-regular tessellations, with 7 being 2-uniform, and 7 being 3-uniform.
He codes letter names for the vertex types, with superscripts to distinguish face orders. He recognizes A, B, C, D, F, and J can't be a part of continuous coverings of the whole plane.
class=wikitable
!A | B (none) | C (none) | D (none) | E (semi) | F (none) | G (semi) | H (semi) | J (none) | K (2) (reg) |
align=center valign=bottom
|BGCOLOR="#e0e0e0"|40px |BGCOLOR="#e0e0e0"|40px |BGCOLOR="#e0e0e0"|40px |BGCOLOR="#e0e0e0"|40px |BGCOLOR="#ffe0e0"|40px |BGCOLOR="#e0e0e0"|40px |BGCOLOR="#e0e0e0"|40px | |||||||||
L1 (demi)||L2 (demi)||M1 (demi)||M2 (semi)||N1 (demi)||N2 (semi)||P (3) (reg)||Q1 (semi)||Q2 (semi)||R (semi)||S (1) (reg) | |||||||||
---|---|---|---|---|---|---|---|---|---|
align=center valign=bottom
|BGCOLOR="#e0e0ff"|40px |BGCOLOR="#e0e0ff"|40px |BGCOLOR="#e0e0ff"|40px |BGCOLOR="#ffe0e0"|40px |BGCOLOR="#e0e0ff"|40px |BGCOLOR="#ffe0e0"|40px |BGCOLOR="#ffe0e0"|40px |BGCOLOR="#ffe0e0"|40px |
class=wikitable
|+ 2-uniforms !1 !2 !4 !6 !7 !10 !14 |
align=center
|100px |100px |100px |100px |100px |100px |
E+L2||L1+(1)||N1+G||M1+M2||N2+Q1||Q1+(1)||N1+Q2 |
---|
class=wikitable width=600
|+ 3-uniforms !3 !5 !8 !9 !11 !12 !13 |
(3.3.4.3.4; 3.3.4.12, 3.4.3.12)
| (36; 3.3.4.12; 3.3.4.3.4) |(3.3.4.3.4; 3.3.3.4.4, 4.3.4.6) |(36, 3.3.4.3.4) |(36; 3.3.4.3.4, 3.3.3.4.4) |(36; 3.3.4.3.4; 3.3.3.4.4) |(3.4.6.4; 3.42.6) |
L1+L2+Q1||L1+Q1+(1)||N1+Q1+Q2||Q1+(1)||Q1+Q2+(1)||Q1+Q2+(1)||N1+N2 |
---|
colspan="7" |[https://web.archive.org/web/20160507010400/http://www.math.nus.edu.sg/aslaksen/papers/Demiregular.pdf Claimed Tilings] and Duals |
120x120px |
120x120px |
References
{{Reflist}}
- Ghyka, M. The Geometry of Art and Life, (1946), 2nd edition, New York: Dover, 1977.
- Keith Critchlow, Order in Space: A design source book, 1970, pp. 62–67
- {{The Geometrical Foundation of Natural Structure (book)}} pp. 35–43
- Steinhaus, H. Mathematical Snapshots 3rd ed, (1969), Oxford University Press, and (1999) New York: Dover
- {{cite book | author-link=Branko Grünbaum | last1=Grünbaum | first1=Branko | last2=Shephard | first2=G. C. | title=Tilings and Patterns | publisher=W. H. Freeman | date=1987 | isbn=0-7167-1193-1 | url-access=registration | url=https://archive.org/details/isbn_0716711931 }} p. 65
- {{cite journal | first=D. |last=Chavey | title=Tilings by Regular Polygons—II: A Catalog of Tilings | url=https://www.beloit.edu/computerscience/faculty/chavey/catalog/ | journal=Computers & Mathematics with Applications | year=1989 | volume=17 | pages=147–165 | doi=10.1016/0898-1221(89)90156-9| doi-access= }}
- [https://web.archive.org/web/20160507010400/http://www.math.nus.edu.sg/aslaksen/papers/Demiregular.pdf In Search of Demiregular Tilings], Helmer Aslaksen
External links
- {{MathWorld | urlname=DemiregularTessellation | title=Demiregular tessellation}}
- [http://probabilitysports.com/tilings.html n-uniform tilings] Brian Galebach