density of air
{{Short description|Mass per unit volume of the Earth's atmosphere}}
The density of air or atmospheric density, denoted ρ,Rho is widely used as a generic symbol for density is the mass per unit volume of Earth's atmosphere at a given point and time. Air density, like air pressure, decreases with increasing altitude. It also changes with variations in atmospheric pressure, temperature, and humidity. According to the ISO International Standard Atmosphere (ISA), the standard sea level density of air at 101.325 kPa (abs) and {{cvt|15|C|F|lk=on}} is {{cvt|1.2250|kg/m3|lb/ft3|lk=on}}.{{cite book | title=Advanced Aircraft Design | chapter=Appendix B: International Standard Atmosphere | publisher=John Wiley & Sons, Ltd | date=2013 | isbn=978-1-118-56810-1 | doi=10.1002/9781118568101.app2?msockid=16dc6d361f816a382ce57ec01e986b56 | doi-access=free | url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/9781118568101.app2 | ref={{sfnref|John Wiley & Sons, Ltd|2013}} | access-date=2025-04-27|quote=Table B.1 Basic properties of the International Standard Atmosphere (ISA), Standard values at SL, Pressure p=1.013250×10^5 Pa (760 mm Hg), Temperature T=15°C (288.15 K), Density ρ=1.2250 kg/m3....}} At the non-standard sea level temperature of {{cvt|20|C|F}}, the density would decrease to {{Cvt|1.204|kg/m3|lb/ft3|abbr=on}}. This is about {{fract|1|800}} that of water with a density of about {{cvt|1000|kg/m3|lb/ft3}}.
Air density is a property used in many branches of science, engineering, and industry, including aeronautics;Olson, Wayne M. (2000) AFFTC-TIH-99-01, Aircraft Performance FlightICAO, Manual of the ICAO Standard Atmosphere (extended to 80 kilometres (262 500 feet)), Doc 7488-CD, Third Edition, 1993, {{ISBN|92-9194-004-6}}.Grigorie, T.L., Dinca, L., Corcau J-I. and Grigorie, O. (2010) Aircraft's Altitude Measurement Using Pressure Information:Barometric Altitude and Density Altitude gravimetric analysis;A., Picard, R.S., Davis, M., Gläser and K., Fujii (CIPM-2007) Revised formula for the density of moist air the air-conditioning industry;S. Herrmann, H.-J. Kretzschmar, and D.P. Gatley (2009), ASHRAE RP-1485 Final Report atmospheric research and meteorology;F.R. Martins, R.A. Guarnieri e E.B. Pereira, (2007) O aproveitamento da energia eólica (The wind energy resource).Andrade, R.G., Sediyama, G.C., Batistella, M., Victoria, D.C., da Paz, A.R., Lima, E.P., Nogueira, S.F. (2009) Mapeamento de parâmetros biofísicos e da evapotranspiração no Pantanal usando técnicas de sensoriamento remotoMarshall, John and Plumb, R. Alan (2008), Atmosphere, ocean, and climate dynamics: an introductory text {{ISBN|978-0-12-558691-7}}. agricultural engineering (modeling and tracking of Soil-Vegetation-Atmosphere-Transfer (SVAT) models);Pollacco, J. A., and B. P. Mohanty (2012), Uncertainties of Water Fluxes in Soil-Vegetation-Atmosphere Transfer Models: Inverting Surface Soil Moisture and Evapotranspiration Retrieved from Remote Sensing, Vadose Zone Journal, 11(3), {{doi|10.2136/vzj2011.0167}}.Shin, Y., B. P. Mohanty, and A.V.M. Ines (2013), Estimating Effective Soil Hydraulic Properties Using Spatially Distributed Soil Moisture and Evapotranspiration, Vadose Zone Journal, 12(3), {{doi|10.2136/vzj2012.0094}}.Saito, H., J. Simunek, and B. P. Mohanty (2006), Numerical Analysis of Coupled Water, Vapor, and Heat Transport in the Vadose Zone, Vadose Zone J. 5: 784–800. and the engineering community that deals with compressed air.Perry, R.H. and Chilton, C.H., eds., Chemical Engineers' Handbook, 5th ed., McGraw-Hill, 1973.
Depending on the measuring instruments used, different sets of equations for the calculation of the density of air can be applied. Air is a mixture of gases and the calculations always simplify, to a greater or lesser extent, the properties of the mixture.
Temperature
Other things being equal (most notably the pressure and humidity), hotter air is less dense than cooler air and will thus rise while cooler air tends to fall due to buoyancy. This can be seen by using the ideal gas law as an approximation.
Dry air
The density of dry air can be calculated using the ideal gas law, expressed as a function of temperature and pressure:{{citation needed|date=November 2021}}
\rho &= \frac{p}{R_\text{specific} T}\\
R_\text{specific} &= \frac{R}{M} = \frac{k_{\rm B}}{m}\\
\rho &= \frac{pM}{RT} = \frac{pm}{k_{\rm B}T}\\
\end{align}
where:
- , air density (kg/m3)In the SI unit system. However, other units can be used.
- , absolute pressure (Pa)
- , absolute temperature (K)
- is the gas constant, {{val|8.31446261815324}} in J⋅K−1⋅mol−1
- is the molar mass of dry air, approximately {{val|0.0289652}} in kg⋅mol−1.
- is the Boltzmann constant, {{val|1.380649||e=-23}} in J⋅K−1
- is the molecular mass of dry air, approximately {{val|4.81|e=-26}} in kg.
- , the specific gas constant for dry air, which using the values presented above would be approximately {{val|287.0500676}} in J⋅kg−1⋅K−1.
Therefore:
- At IUPAC standard temperature and pressure (0{{nbsp}}°C and 100{{nbsp}}kPa), dry air has a density of approximately 1.2754{{nbsp}}kg/m3.
- At 20{{nbsp}}°C and 101.325{{nbsp}}kPa, dry air has a density of 1.2041 kg/m3.
- At 70{{nbsp}}°F and 14.696{{nbsp}}psi, dry air has a density of 0.074887{{nbsp}}lb/ft3.
The following table illustrates the air density–temperature relationship at 1 atm or 101.325 kPa:
{{Temperature effect}}
Humid air
{{further|Humidity}}
File:Air density dependence on temperature and relative humidity.svg
The addition of water vapor to air (making the air humid) reduces the density of the air, which may at first appear counter-intuitive. This occurs because the molar mass of water vapor (18{{nbsp}}g/mol) is less than the molar mass of dry airas dry air is a mixture of gases, its molar mass is the weighted average of the molar masses of its components (around 29{{nbsp}}g/mol). For any ideal gas, at a given temperature and pressure, the number of molecules is constant for a particular volume (see Avogadro's Law). So when water molecules (water vapor) are added to a given volume of air, the dry air molecules must decrease by the same number, to keep the pressure from increasing or temperature from decreasing. Hence the mass per unit volume of the gas (its density) decreases.
The density of humid air may be calculated by treating it as a mixture of ideal gases. In this case, the partial pressure of water vapor is known as the vapor pressure. Using this method, error in the density calculation is less than 0.2% in the range of −10 °C to 50 °C. The density of humid air is found by:[http://wahiduddin.net/calc/density_altitude.htm Shelquist, R (2009) Equations - Air Density and Density Altitude]
\rho_\text{humid air} = \frac{p_\text{d}}{R_\text{d} T} + \frac{p_\text{v}}{R_\text{v} T} = \frac{p_\text{d}M_\text{d} + p_\text{v}M_\text{v}}{R T}
where:
- , density of the humid air (kg/m3)
- , partial pressure of dry air (Pa)
- , specific gas constant for dry air, 287.058{{nbsp}}J/(kg·K)
- , temperature (K)
- , pressure of water vapor (Pa)
- , specific gas constant for water vapor, 461.495{{nbsp}}J/(kg·K)
- , molar mass of dry air, 0.0289652{{nbsp}}kg/mol
- , molar mass of water vapor, 0.018016{{nbsp}}kg/mol
- , universal gas constant, 8.31446{{nbsp}}J/(K·mol)
The vapor pressure of water may be calculated from the saturation vapor pressure and relative humidity. It is found by:
where:
- , vapor pressure of water
- , relative humidity (0.0–1.0)
- , saturation vapor pressure
The saturation vapor pressure of water at any given temperature is the vapor pressure when relative humidity is 100%. One formula is Tetens' equation from[http://wahiduddin.net/calc/density_algorithms.htm Shelquist, R (2009) Algorithms - Schlatter and Baker] used to find the saturation vapor pressure is:
where:
- , saturation vapor pressure (kPa)
- , temperature (K)
See vapor pressure of water for other equations.
The partial pressure of dry air is found considering partial pressure, resulting in:
where simply denotes the observed absolute pressure.
Variation with altitude
{{further|Barometric formula#Density equations}}
=Troposphere=
To calculate the density of air as a function of altitude, one requires additional parameters. For the troposphere, the lowest part (~10 km) of the atmosphere, they are listed below, along with their values according to the International Standard Atmosphere, using for calculation the universal gas constant instead of the air specific constant:
- , sea level standard atmospheric pressure, 101325{{nbsp}}Pa
- , sea level standard temperature, 288.15{{nbsp}}K
- , earth-surface gravitational acceleration, 9.80665{{nbsp}}m/s2
- , temperature lapse rate, 0.0065{{nbsp}}K/m
- , ideal (universal) gas constant, 8.31446{{nbsp}}J/(mol·K)
- , molar mass of dry air, 0.0289652{{nbsp}}kg/mol
Temperature at altitude meters above sea level is approximated by the following formula (only valid inside the troposphere, no more than ~18{{nbsp}}km above Earth's surface (and lower away from Equator)):
The pressure at altitude is given by:
Density can then be calculated according to a molar form of the ideal gas law:
\rho = \frac{p M}{R T}
= \frac{p M}{R T_0 \left(1 - \frac{Lh}{T_0}\right)}
= \frac{p_0 M}{R T_0} \left(1 - \frac{L h}{T_0} \right)^{\frac{g M}{R L} - 1}
where:
Note that the density close to the ground is
It can be easily verified that the hydrostatic equation holds:
==Exponential approximation==
As the temperature varies with height inside the troposphere by less than 25%, and one may approximate:
\rho = \rho_0 e^{\left(\frac{g M}{R L} - 1\right) \ln \left(1 - \frac{L h}{T_0}\right)}
\approx \rho_0 e^{-\left(\frac{g M}{R L} - 1\right)\frac{L h}{T_0}}
= \rho_0 e^{-\left(\frac{g M h}{R T_0} - \frac{L h}{T_0}\right)}
Thus:
Which is identical to the isothermal solution, except that Hn, the height scale of the exponential fall for density (as well as for number density n), is not equal to RT0/gM as one would expect for an isothermal atmosphere, but rather:
\frac{1}{H_n} = \frac{g M}{R T_0} - \frac{L}{T_0}
Which gives Hn = 10.4{{nbsp}}km.
Note that for different gasses, the value of Hn differs, according to the molar mass M: It is 10.9 for nitrogen, 9.2 for oxygen and 6.3 for carbon dioxide. The theoretical value for water vapor is 19.6, but due to vapor condensation the water vapor density dependence is highly variable and is not well approximated by this formula.
The pressure can be approximated by another exponent:
p = p_0 e^{\frac{g M}{R L} \ln \left(1 - \frac{L h}{T_0}\right)}
\approx p_0 e^{-\frac{g M}{R L}\frac{L h}{T_0}}
= p_0 e^{-\frac{g M h}{R T_0}}
Which is identical to the isothermal solution, with the same height scale {{nowrap|Hp {{=}} RT0/gM}}. Note that the hydrostatic equation no longer holds for the exponential approximation (unless L is neglected).
Hp is 8.4{{nbsp}}km, but for different gasses (measuring their partial pressure), it is again different and depends upon molar mass, giving 8.7 for nitrogen, 7.6 for oxygen and 5.6 for carbon dioxide.
==Total content==
Further note that since g, Earth's gravitational acceleration, is approximately constant with altitude in the atmosphere, the pressure at height h is proportional to the integral of the density in the column above h, and therefore to the mass in the atmosphere above height h. Therefore, the mass fraction of the troposphere out of all the atmosphere is given using the approximated formula for p:
For nitrogen, it is 75%, while for oxygen this is 79%, and for carbon dioxide, 88%.
=Tropopause=
Higher than the troposphere, at the tropopause, the temperature is approximately constant with altitude (up to ~20{{nbsp}}km) and is 220{{nbsp}}K. This means that at this layer {{nowrap|L {{=}} 0}} and {{nowrap|T {{=}} 220 K}}, so that the exponential drop is faster, with {{nowrap|HTP {{=}} 6.3 km}} for air (6.5 for nitrogen, 5.7 for oxygen and 4.2 for carbon dioxide). Both the pressure and density obey this law, so, denoting the height of the border between the troposphere and the tropopause as U:
p &= p(U) e^{-\frac{h - U}{H_\text{TP}}} = p_0 \left(1 - \frac{L U}{T_0}\right)^\frac{g M}{R L} e^{-\frac{h - U}{H_\text{TP}}} \\
\rho &= \rho(U) e^{-\frac{h - U}{H_\text{TP}}} = \rho_0 \left(1 - \frac{L U}{T_0}\right)^{\frac{g M}{R L} - 1} e^{-\frac{h - U}{H_\text{TP}}}
\end{align}
Composition
{{Table composition of dry atmosphere}}
See also
Notes
{{Reflist|group=note}}
References
{{Reflist}}
External links
- [http://www.sengpielaudio.com/ConvDensi.htm Conversions of density units ρ by Sengpielaudio]
- [http://wahiduddin.net/calc/density_altitude.htm Air density and density altitude calculations and by Richard Shelquist]
- [http://www.sengpielaudio.com/calculator-airpressure.htm Air density calculations by Sengpielaudio (section under Speed of sound in humid air)]
- [http://www.enggcyclopedia.com/calculators/physical-properties/air-density-calculator/ Air density calculator by Engineering design encyclopedia] {{Webarchive|url=https://web.archive.org/web/20211218111827/http://www.enggcyclopedia.com/calculators/physical-properties/air-density-calculator/ |date=2021-12-18 }}
- [https://web.archive.org/web/20140222174637/http://www.wolfdynamics.com/tools/atmospheric-pressure-calculator.html/ Atmospheric pressure calculator by wolfdynamics]
- [https://web.archive.org/web/20160306233150/https://itunes.apple.com/en/app/air-itools/id598469643?mt=8 Air iTools - Air density calculator for mobile by JSyA]
- [https://www.nist.gov/system/files/documents/calibrations/CIPM-2007.pdf Revised formula for the density of moist air (CIPM-2007) by NIST]
Category:Atmospheric thermodynamics