diagonal subgroup
In the mathematical discipline of group theory, for a given group {{math|G,}} the diagonal subgroup of the n-fold direct product {{math|G  n}} is the subgroup
:
This subgroup is isomorphic to {{math|G.}}
Properties and applications
- If {{math|G}} acts on a set {{math|X,}} the n-fold diagonal subgroup has a natural action on the Cartesian product {{math|X n}} induced by the action of {{math|G}} on {{math|X,}} defined by
:
- If {{math|G}} acts {{math|n}}-transitively on {{math|X,}} then the {{math|n}}-fold diagonal subgroup acts transitively on {{math|X n.}} More generally, for an integer {{math|k,}} if {{math|G}} acts {{math|kn}}-transitively on {{math|X,}} {{math|G}} acts {{math|k}}-transitively on {{math|X n.}}
- Burnside's lemma can be proved using the action of the twofold diagonal subgroup.
See also
References
- {{citation|title=Algebra|first1=Vivek|last1=Sahai|first2=Vikas|last2=Bist|publisher=Alpha Science Int'l Ltd.|year=2003|isbn=9781842651575|page=56|url=https://books.google.com/books?id=VsoyRX_nHLkC&pg=PA56}}.
{{group-theory-stub}}