disrupted planet

{{Short description|Planet or related being destroyed by a passing object}}

{{use dmy dates|date=December 2017}}

File:Artist's impression of a white dwarf devouring a minor planet.jpg

In astronomy, a disrupted planet{{cite web |author=Staff |title=Young Star RZ Piscium is 'Eating' Its Own Planets, Astronomers Say |url=http://www.sci-news.com/astronomy/young-star-rz-piscium-eating-planets-05561.html |date=22 December 2017 |work=Sci-News.com |access-date=23 December 2017 }}{{cite web |last=Fryling |first=Kevin |title=IU astronomer's analysis helps discover that a star in the constellation Pisces is a 'planet-eater' |url=https://news.iu.edu/stories/2017/12/iub/21-science-planet-eating-star.html |date=21 December 2017 |work=Indiana University |access-date=23 December 2017 }} is a planet or exoplanet or, perhaps on a somewhat smaller scale, a planetary-mass object, planetesimal, moon, exomoon or asteroid that has been disrupted or destroyed by a nearby or passing astronomical body or object such as a star. Necroplanetology is the related study of such a process.{{cite news |last=Starr |first=Michelle |title=Necroplanetology: The Strangest Field of Astronomy You've Never Heard Of |url=https://www.sciencealert.com/necroplanetology-the-study-of-planets-dismembered-remains |date=28 March 2020 |work=ScienceAlert.com |access-date=30 March 2020 }}{{cite journal |last1=Duvvuri |first1=Girish M. |last2=Redfield |first2=Seth |last3=Veras |first3=Dimitri |title=Necroplanetology: Simulating the Tidal Disruption of Differentiated Planetary Material Orbiting WD 1145+017 |journal=The Astrophysical Journal |date=18 March 2020 |volume=893 |issue=2 |page=166 |doi=10.3847/1538-4357/ab7fa0 |arxiv=2003.08410 |bibcode=2020ApJ...893..166D |s2cid=213004256 |doi-access=free }}

The result of such a disruption may be the production of excessive amounts of related gas, dust and debris,{{cite journal |last1=Punzi |first1=K. M. |last2=Kastner |first2=J. H. |last3=Melis |first3=C. |last4=Zuckerman |first4=B. |last5=Pilachowski |first5=C. |last6=Gingerich |first6=L. |last7=Knapp |first7=T. |title=Is the Young Star RZ Piscium Consuming Its Own (Planetary) Offspring? |doi=10.3847/1538-3881/aa9524 |date=21 December 2017 |journal=The Astronomical Journal |volume=155 |pages=33 |number=1 |bibcode=2018AJ....155...33P |arxiv=1712.08962 |s2cid=119530135 |doi-access=free }} which may eventually surround the parent star in the form of a circumstellar disk or debris disk. As a consequence, the orbiting debris field may be an "uneven ring of dust", causing erratic light fluctuations in the apparent luminosity of the parent star, as may have been responsible for the oddly flickering light curves associated with the starlight observed from certain variable stars, such as that from Tabby's Star (KIC 8462852), RZ Piscium and WD 1145+017. Excessive amounts of infrared radiation may be detected from such stars,{{Cite journal|last1=Farihi |first1=J. |last2=Jura |first2=M. |last3=Zuckerman |first3=B. |title=Infrared Signatures of Disrupted Minor Planets at White Dwarfs |journal=The Astrophysical Journal |volume=694 |issue=2 |pages=805–819 |date=10 March 2009 |arxiv=0901.0973|doi=10.1088/0004-637X/694/2/805 |bibcode=2009ApJ...694..805F |s2cid=14171378 }} suggestive evidence in itself that dust and debris may be orbiting the stars.{{cite web |last=Landau |first=Elizabeth |title=Mysterious Dimming of Tabby's Star May Be Caused by Dust |url=https://www.jpl.nasa.gov/news/news.php?feature=6963 |date=4 October 2017 |work=NASA |access-date=23 December 2017 }}{{cite journal |author=Meng, Huan Y.A.|display-authors=et al |title=Extinction and the Dimming of KIC 8462852 |date=3 October 2017 |journal=The Astrophysical Journal |volume=847 |number=2 |page=131 |doi=10.3847/1538-4357/aa899c |bibcode=2017ApJ...847..131M |arxiv=1708.07556 |s2cid=118875846 |doi-access=free }}{{cite web |last=Tabor |first=Abby |title=The scientific quest to explain Kepler's most enigmatic find |url=https://phys.org/news/2017-10-scientific-quest-kepler-enigmatic.html |date=5 October 2017 |work=Phys.org |access-date=23 December 2017 }}

Examples

=Planets=

Examples of planets, or their related remnants, considered to have been a disrupted planet, or part of such a planet, include: ‘Oumuamua{{Cite journal|last=Ćuk |first=Matija |arxiv=1712.01823 |title=1I/ʻOumuamua as a Tidal Disruption Fragment From a Binary Star System |journal=The Astrophysical Journal |volume=852 |issue=1 |pages=L15 |date=2017 |doi=10.3847/2041-8213/aaa3db |bibcode=2018ApJ...852L..15C |s2cid=54959652 |doi-access=free }} and WD 1145+017 b, as well as asteroids,{{cite journal |last=Soter |first=Steven |title=What is a Planet? |date=2006 |journal= The Astronomical Journal|volume=132 |issue=6 |pages=2513–2519 |arxiv=astro-ph/0608359 |doi=10.1086/508861|bibcode=2006AJ....132.2513S |s2cid=14676169 }} hot Jupiters{{cite journal |last=Nayakshin |first=Sergei |title=Hot Super Earths: disrupted young jupiters? |date=20 September 2011 |journal=Monthly Notices of the Royal Astronomical Society |volume=416 |issue=4 |pages=2974–2980 |doi=10.1111/j.1365-2966.2011.19246.x |doi-access=free |bibcode=2011MNRAS.416.2974N |arxiv=1103.1846 |s2cid=53960650 }} and those that are hypothetical planets, like Fifth planet, Phaeton, Planet V and Theia. Planets can also be disrupted by black holes; one example involves a "Jupiter-like object" being subject to a tidal disruption event by the supermassive black hole IGR J12580+0134, at the center of the galaxy NGC 4845.{{Cite journal |last1=Lei |first1=Wei-Hua |last2=Yuan |first2=Qiang |last3=Zhang |first3=Bing |last4=Wang |first4=Daniel |date=2016-01-01 |title=Igr J12580+0134: The First Tidal Disruption Event with an Off-Beam Relativistic Jet |journal=The Astrophysical Journal |volume=816 |issue=1 |pages=20 |doi=10.3847/0004-637X/816/1/20 |doi-access=free |issn=0004-637X|arxiv=1511.01206 |bibcode=2016ApJ...816...20L }}

=Stars=

Examples of parent stars considered to have disrupted a planet include: EPIC 204278916, Tabby's Star (KIC 8462852), PDS 110, RZ Piscium, WD 1145+017 and 47 Ursae Majoris.{{cn|date=January 2025}}

File:PIA22081-KIC8462852-TabbysStar-UnevenDustRing-Illustration-20171004.png" surrounding Tabby's Star}}]]

{{clear}}

Tabby's Star light curve

Tabby's Star (KIC 8462852) is an F-type main-sequence star exhibiting unusual light fluctuations, including up to a 22% dimming in brightness.{{Cite journal|last1=Boyajian|first1=T. S.|last2=LaCourse|first2=D. M.|last3=Rappaport|first3=S. A.|last4=Fabrycky|first4=D.|last5=Fischer|first5=D. A.|last6=Gandolfi|first6=D.|last7=Kennedy|first7=G. M.|last8=Korhonen|first8=H.|last9=Liu|first9=M. C.|date=2016-01-27|title=Planet Hunters IX. KIC 8462852 – where's the flux?|url=https://academic.oup.com/mnras/article-abstract/457/4/3988/2589003?redirectedFrom=fulltext|journal=Monthly Notices of the Royal Astronomical Society|language=en|volume=457|issue=4|pages=3988–4004|doi=10.1093/mnras/stw218|doi-access=free |issn=0035-8711|arxiv=1509.03622|bibcode=2016MNRAS.457.3988B|s2cid=54859232}} Several hypotheses have been proposed to explain these irregular changes, but none to date fully explain all aspects of the curve. One explanation is that an "uneven ring of dust" orbits Tabby's Star.{{Cite web|url=https://www.jpl.nasa.gov/news/news.php?feature=6963|title=Mysterious Dimming of Tabby's Star May Be Caused by Dust|website=NASA/JPL|access-date=2018-11-13}}{{Cite journal|last1=Boyajian|first1=Tabetha S.|last2=Alonso|first2=Roi|last3=Ammerman|first3=Alex|last4=Armstrong|first4=David|last5=Ramos|first5=A. Asensio|last6=Barkaoui|first6=K.|last7=Beatty|first7=Thomas G.|last8=Benkhaldoun|first8=Z.|last9=Benni|first9=Paul|date=2018-01-19|title=The First Post-Kepler Brightness Dips of KIC 8462852|journal=The Astrophysical Journal|volume=853|issue=1|pages=L8|doi=10.3847/2041-8213/aaa405|issn=2041-8213|arxiv=1801.00732|bibcode=2018ApJ...853L...8B|s2cid=215751718 |doi-access=free }} However, in September 2019, astronomers reported that the observed dimmings of Tabby's Star may have been produced by fragments resulting from the disruption of an orphaned exomoon.{{cite news |author=Columbia University |title=New observations help explain the dimming of Tabby's Star |url=https://phys.org/news/2019-09-dimming-tabby-star.html |date=16 September 2019 |work=Phys.org |access-date=16 September 2019 |author-link=Columbia University }}{{cite journal |last1=Marinez |first1=Miquel |last2=Stone |first2=Nicholas C. |last3=Metzger |first3=Brian D. |title=Orphaned Exomoons: Tidal Detachment and Evaporation Following an Exoplanet-Star Collision |date=5 September 2019 |journal=Monthly Notices of the Royal Astronomical Society |volume=489 |issue=4 |pages=5119–5135 |doi=10.1093/mnras/stz2464 |doi-access=free |arxiv=1906.08788 |bibcode=2019MNRAS.489.5119M |s2cid=195316956 }}

{{panorama

|image=File:Consolidated plot of KIC 8462852 dip maxima March 2020 update.png

|height=300

|caption={{center|Consolidated plot of all known dimmings (as of 1 March 2020)}}

}}

File:KIC 8462852 - gesamte Helligkeitsmessung von Kepler.png|All light curve data − December 2009 to May 2013, scan days 0066 to 1587 (Kepler)

File:KIC 8462852 - Helligkeitseinbruch 05. März 2011.png|5 March 2011 − day 792
15% max dip (Kepler)

File:KIC 8462852 - Helligkeitseinbruch 28. Februar 2013.png|28 February 2013 − day 1519
22% max dip (Kepler)

File:KIC 8462852 - Helligkeitseinbruch 17. April 2013.png|17 April 2013 − day 1568
8% max dip (Kepler)

File:KIC 8462852 Daily Normalized Flux by Bruce Gary, 20170502-20180504.png|One year light curve −
up to 4 May 2018
(HAO{{cite web |last=Gary |first=Bruce L. |author-link=Bruce L. Gary |title=Hereford Arizona Observatory photometry observations of KIC 8462852 |url=http://www.brucegary.net/ts5/ |date=14 November 2017 |work=BruceGary.net |access-date=24 December 2017 }}{{cite web |last=Gary |first=Bruce L. |author-link=Bruce L. Gary |title=Hereford Arizona Observatory photometry observations of KIC 8462852 between 2 May and 4 October 2017 |url=http://www.brucegary.net/ts4/ |date=4 October 2017 |url-status=dead |archive-url=https://web.archive.org/web/20171004220716/http://www.brucegary.net/ts4/ |archive-date=4 October 2017 |work=BruceGary.net |access-date=23 December 2017 |quote=Note: g'-band and r'-band dip depths (and shapes) may differ, with g'-band being more sensitive to dust cloud scattering due to its shorter wavelength (0.47 vs. 0.62 micron). For a reasonable particle size distribution (e.g., Hanson, 0.2 micron) the extinction cross section ratio would produce a depth at r'-band that is 0.57 x depth at g'-band. If g'-band depth is 0.3 %, for example, depth at r'-band could be 0.17 %. The "Tabby Team" measurements (Fig. 3) at r'-band are compatible with that small dip depth. Incidentally, none of these shapes resemble exo-comet tail transits; so the mystery of what's producing these week-timescale dips continues! Actually, long oval shapes are known to produce V-shaped dips (think of rings with a high inclination).}} – (as described by Rappaport et al, 2017 [https://arxiv.org/abs/1708.06069 link]){{cite web |last=Gary |first=Bruce L. |author-link=Bruce L. Gary |title=Hereford Arizona Observatory photometry observations of KIC 8462852 between 2 May and 31 December 2017 |url=http://www.brucegary.net/ts5/ |date=1 January 2018 |url-status=dead |archive-url=https://web.archive.org/web/20180102012647/http://www.brucegary.net/ts5/ |archive-date=2 January 2018 |work=BruceGary.net |access-date=1 January 2018 }}{{cite web |last=Gary |first=Bruce L. |author-link=w:Bruce L. Gary |title=Hereford Arizona Observatory photometry observations of KIC 8462852 between 2 May 2017 and 4 May 2018 |url=http://www.brucegary.net/ts6/ |date=4 May 2018 |url-status=dead |archive-url=https://web.archive.org/web/20180505143701/http://www.brucegary.net/ts6/ |archive-date=5 May 2018 |work=BruceGary.net |access-date=5 May 2018 }})

File:KIC 8462852 October-December 2019 Gary.jpg|Light curve between 10 October 2019 and 11 January 2020 (HAO){{Cite web|url=http://www.brucegary.net/ts9/|date=11 January 2020|title=KIC 8462852 Hereford Arizona Observatory Photometry Observations #9|first=Bruce|last=Gary|access-date=5 April 2020|archive-url=https://web.archive.org/web/20200405060559/http://www.brucegary.net/ts9/|archive-date=5 April 2020}}

See also

References

{{reflist|30em}}

Further reading

  • {{cite book|author=Wallace Gary Ernst|title=The Dynamic Planet|url=https://archive.org/details/dynamicplanet0000erns|url-access=registration|page=[https://archive.org/details/dynamicplanet0000erns/page/18 18]|year=1990|publisher=Columbia University Press|isbn=978-0-231-07231-1}}
  • {{cite book|author=Michael M. Woolfson|author-link=Michael Woolfson|title=The Origin and Evolution of the Solar System|url=https://books.google.com/books?id=KantSzMGPSkC&pg=PA316|year=2000|publisher=CRC Press|isbn=978-1-4200-3335-9}}