distortion function

{{Technical|date=November 2021}}

A distortion function in mathematics and statistics, for example, g: [0,1] \to [0,1], is a non-decreasing function such that g(0) = 0 and g(1) = 1. The dual distortion function is \tilde{g}(x) = 1 - g(1-x).{{Cite journal | last1 = Balbás | first1 = A. | last2 = Garrido | first2 = J. | last3 = Mayoral | first3 = S. | doi = 10.1007/s11009-008-9089-z | title = Properties of Distortion Risk Measures | journal = Methodology and Computing in Applied Probability | volume = 11 | issue = 3 | pages = 385 | year = 2008 | hdl = 10016/14071 | s2cid = 53327887 | hdl-access = free }}{{cite web|title=Distortion Risk Measures: Coherence and Stochastic Dominance|author=Julia L. Wirch|author2=Mary R. Hardy|url=http://pascal.iseg.utl.pt/~cemapre/ime2002/main_page/papers/JuliaWirch.pdf|access-date=March 10, 2012|archive-url=https://web.archive.org/web/20160705041252/http://pascal.iseg.utl.pt/~cemapre/ime2002/main_page/papers/JuliaWirch.pdf|archive-date=July 5, 2016|url-status=dead}} Distortion functions are used to define distortion risk measures.

Given a probability space (\Omega,\mathcal{F},\mathbb{P}), then for any random variable X and any distortion function g we can define a new probability measure \mathbb{Q} such that for any A \in \mathcal{F} it follows that

: \mathbb{Q}(A) = g(\mathbb{P}(X \in A)).

References