dodecaborate

{{use dmy dates|date=September 2024}}

{{cs1 config |display-authors=6}}

{{Chembox

| OtherNames = Dodecahydrododecaborate(2-)

| Name = Dodecaborate

| ImageFile = Dodecaborate(12)-dianion-from-xtal-3D-bs-17.png

| Section1 = {{Chembox Identifiers

| CASNo = 12356-13-7

| CASNo_Ref = {{cascite|correct|CAS}}

| ChEBI = 33594

| Gmelin = 3407

| SMILES = [BH-]1234[BH]5%12%13[BH]1%10%11[BH]289[BH]367[BH]145[BH]6%14%15[BH]78%16[BH]9%10%17[BH]%11%12%18[BH]1%13%14[BH-]%15%16%17%18

| SMILES1 = [BH]1234[BH]567[BH]189[BH]2%10%11[BH]8%12%13[BH]%10%14%15[BH]%16%17%18[BH]35([BH]6%16%19[BH]%12%14%17[BH-]79%13%19)[BH-]4%11%15%18

| StdInChI=1S/B12H12/c1-2-3(1)5(1)6(1)4(1,2)8(2)7(2,3)9(3,5)11(5,6)10(4,6,8)12(7,8,9)11/h1-12H/q-2

| StdInChIKey=CHOGGIOVKODKET-UHFFFAOYSA-N

}}

| Section2 = {{Chembox Properties

| Formula = {{chem2|B12H12}}

| MolarMass = 141.9504 g/mol

}}

| Section8 = {{Chembox Related

}}

}}

The dodecaborate(12) anion, [B12H12]2−, is a borane with an icosahedral arrangement of 12 boron atoms, with each boron atom being attached to a hydrogen atom. Its symmetry is classified by the molecular point group Ih.

Synthesis and reactions

The existence of the dodecaborate(12) anion, [B12H12]2−, was predicted by H. C. Longuet-Higgins and M. de V. Roberts in 1955.{{Cite journal |last=Longuet-Higgins |first=Hugh Christopher |last2=Roberts |first2=M. de V. |date=June 1955 |title=The electronic structure of an icosahedron of boron atoms |journal=Proceedings of the Royal Society of London |series=Series A. Mathematical and Physical Sciences |volume=230 |issue=1180 |pages=110–119 |bibcode=1955RSPSA.230..110L |doi=10.1098/rspa.1955.0115 |s2cid=98533477}} Hawthorne and Pitochelli first made it 5 years later, by the reaction of 2-iododecaborane with triethylamine in benzene solution at 80 °C.{{Cite journal |last=Pitochelli |first=Anthony R. |last2=Hawthorne |first2=Frederick M. |date=June 1960 |title=The Isolation of Icosahedral {{chem|B|12|H|12|2−}} Ion |journal=Journal of the American Chemical Society |volume=82 |issue=12 |pages=3228–3229 |doi=10.1021/ja01497a069}} It is more conveniently prepared in two steps from sodium borohydride. First the borohydride is converted into a triborate anion using the etherate of boron trifluoride:

: 5 NaBH4 + BF3 → 2 NaB3H8 + 3 NaF + 2 H2

Pyrolysis of the triborate gives the twelve-boron cluster as the sodium salt.{{Cite book |last=Miller |first=H. C. |title=Inorganic Syntheses |last2=Muetterties |first2=E. L. |last3=Boone |first3=J. L. |last4=Garrett |first4=P. |last5=Hawthorne |first5=M. F. |year=2007 |isbn=978-0-470-13241-8 |pages=81–91 |chapter=Borane Anions |doi=10.1002/9780470132418.ch16}} A variety of other synthetic methods have been published.

Salts of the dodecaborate ion are stable in air and do not react with hot aqueous sodium hydroxide or hydrochloric acid. The anion can be electrochemically oxidised to [B24H23]3−.{{Cite journal |last=Sivaev |first=Igor B. |last2=Bregadze |first2=Vladimir I. |last3=Sjöberg |first3=Stefan |date=2002 |title=Chemistry of closo-Dodecaborate Anion [B12H12]2−: A Review |journal=Collection of Czechoslovak Chemical Communications |volume=67 |issue=6 |pages=679–727 |doi=10.1135/cccc20020679}}

Substituted derivatives

Salts of {{chem|B|12|H|12|2−}} undergo hydroxylation with hydrogen peroxide to give salts of [B12(OH)12]2−.{{Cite book |last=Clayton |first=Joshua R. |title=Inorganic Syntheses |last2=King |first2=Benjamin T. |last3=Zharov |first3=Ilya |last4=Fete |first4=Matthew G. |last5=Volkis |first5=Victoria |last6=Douvris |first6=Christos |last7=Vlášek |first7=Michal |last8=Michl |first8=Josef |year=2010 |isbn=9780471682554 |editor-last=Rauchfuss |editor-first=Thomas B. |volume=35 |pages=56–66 |chapter=Boron Cluster Compounds |doi=10.1002/9780470651568.ch2}} The hydrogen atoms in the ion [B12H12]2− can be replaced by the halogens with various degrees of substitution. The following numbering scheme is used to identify the products. The first boron atom is numbered 1, then the closest ring of five atoms around it is numbered anticlockwise from 2 to 6. The next ring of boron atoms is started from 7 for the atoms closest to number 2 and 3, and counts anticlockwise to 11. The atom opposite the original is numbered 12. A related derivative is [B12(CH3)12]2−. The icosahedron of boron atoms is aromatic in nature.{{citation needed|date=August 2018}}

Under kilobar pressure of carbon monoxide [B12H12]2− reacts to form the carbonyl derivatives [B12H11CO] and the 1,12- and 1,7-isomers of B12H10(CO)2. The para disubstitution at the 1,12 is unusual. In water the dicarbonyls appear to form carboxylic ions: [B12H10(CO)CO2H] and [B12H10(CO2H)2]2−.{{citation needed|date=August 2018}}

A perfluoroborane derivative (with the hydrogen atoms replaced by fluorine atoms) is also known.{{Cite journal |last=Shackelford |first=Scott A. |last2=Belletire |first2=John L. |last3=Boatz |first3=Jerry A. |last4=Schneider |first4=Stefan |last5=Wheaton |first5=Amanda K. |last6=Wight |first6=Brett A. |last7=Ammon |first7=Herman L. |last8=Peryshkov |first8=Dmitry V. |last9=Strauss |first9=Steven H. |date=2010-06-18 |title=Bridged Heterocyclium Dicationic closo- Icosahedral Perfluoroborane, Borane, and Carborane Salts via Aqueous, Open-Air Benchtop Synthesis |url=https://pubs.acs.org/doi/10.1021/ol100752y |journal=Organic Letters |language=en |volume=12 |issue=12 |pages=2714–2717 |doi=10.1021/ol100752y |issn=1523-7060 |pmid=20499850}}

Potential applications

Compounds based on the ion [B12H12]2− have been evaluated for solvent extraction of the radioactive ions 152Eu3+ and 241Am3+.{{Cite journal |last=Bernard |first=R. |last2=Cornu |first2=D. |last3=Grüner |first3=B. |last4=Dozol |first4=J.-F. |last5=Miele |first5=P. |last6=Bonnetot |first6=B. |date=September 2002 |title=Synthesis of [B12H12]2– based extractants and their application for the treatment of nuclear wastes |journal=Journal of Organometallic Chemistry |volume=657 |issue=1–2 |pages=83–90 |doi=10.1016/S0022-328X(02)01540-1}}

[B12H12]2−, [B12(OH)12]2− and [B12(OMe)12]2− show promise for use in drug delivery. They form "closomers", which have been used to make nontargeted high-performance MRI contrast agents which are persistent in tumor tissue.{{Cite journal |last=Axtell |first=J. C. |year=2018 |title=Synthesis and Applications of Perfunctionalized Boron Clusters |journal=Inorganic Chemistry |volume=57 |issue=5 |pages=2333–2350 |doi=10.1021/acs.inorgchem.7b02912 |pmc=5985200 |pmid=29465227}}

Salts of [B12H12]2− are potential therapeutic agents in cancer treatment. For applications in boron neutron capture therapy, derivatives of closo-dodecaborate increase the specificity of neutron irradiation treatment. Neutron irradiation of boron-10 leads to the emission of an alpha particle near the tumor.{{Cite journal |last=Tachikawa |first=Shoji |last2=Miyoshi |first2=Tatsuro |last3=Koganei |first3=Hayato |last4=El-Zaria |first4=Mohamed E. |last5=Vinas |first5=Clara |last6=Suzuki |first6=Minoru |last7=Ono |first7=Koji |last8=Nakamura |first8=Hiroyuki |year=2014 |title=Spermidinium closo-dodecaborate-encapsulating liposomes as efficient boron delivery vehicles for neutron capture therapy |journal=Chemical Communications |volume=50 |issue=82 |pages=12325–12328 |doi=10.1039/c4cc04344h |pmid=25182569 |doi-access=free}}

References