dynamic global vegetation model
{{Short description|Computer vegetation model}}
A Dynamic Global Vegetation Model (DGVM) is a computer program that simulates shifts in potential vegetation and its associated biogeochemical and hydrological cycles as a response to shifts in climate. DGVMs use time series of climate data and, given constraints of latitude, topography, and soil characteristics, simulate monthly or daily dynamics of ecosystem processes. DGVMs are used most often to simulate the effects of future climate change on natural vegetation and its carbon and water cycles.
Model development
DGVMs generally combine biogeochemistry, biogeography, and disturbance submodels. Disturbance is often limited to wildfires, but in principle could include any of: forest/land management decisions, windthrow, insect damage, ozone damage etc. DGVMs usually "spin up" their simulations from bare ground to equilibrium vegetation (e.g. climax community) to establish realistic initial values for their various "pools": carbon and nitrogen in live and dead vegetation, soil organic matter, etc. corresponding to a documented historical vegetation cover.
File:The 2011–2022 decadal mean components of the global carbon budget.png
DGVMs are usually run in a spatially distributed mode, with simulations carried out for thousands of "cells", geographic points which are assumed to have homogeneous conditions within each cell. Simulations are carried out across a range of spatial scales, from global to landscape. Cells are usually arranged as lattice points; the distance between adjacent lattice points may be as coarse as a few degrees of latitude or longitude, or as fine as 30 arc-seconds. Simulations of the conterminous United States in the first DGVM comparison exercise (LPJ and MC1) called the VEMAP project,{{Cite journal |date=December 1995 |title=Vegetation/ecosystem modeling and analysis project- Comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling |url=https://harvardforest1.fas.harvard.edu/publications/pdfs/VEMAP_GlobalBiogeochemicalCycles_1995.pdf |journal=Global Biogeochamical Cucles |volume=9 |issue=4 |pages=407–437}} in the 1990s used a lattice grain of one-half degree. Global simulations by the PIK group and collaborators,{{Cite journal |last=Cramer |first=Wolfgang |last2=Bondeau |first2=Alberte |last3=Woodward |first3=F. Ian |last4=Prentice |first4=I. Colin |last5=Betts |first5=Richard A. |last6=Brovkin |first6=Victor |last7=Cox |first7=Peter M. |last8=Fisher |first8=Veronica |last9=Foley |first9=Jonathan A. |last10=Friend |first10=Andrew D. |last11=Kucharik |first11=Chris |last12=Lomas |first12=Mark R. |last13=Ramankutty |first13=Navin |last14=Sitch |first14=Stephen |last15=Smith |first15=Benjamin |date=April 2001 |title=Global response of terrestrial ecosystem structure and function to CO 2 and climate change: results from six dynamic global vegetation models: ECOSYSTEM DYNAMICS, CO 2 and CLIMATE CHANGE |url=http://doi.wiley.com/10.1046/j.1365-2486.2001.00383.x |journal=Global Change Biology |language=en |volume=7 |issue=4 |pages=357–373 |doi=10.1046/j.1365-2486.2001.00383.x}} using 6 different DGVMs (HYBRID, IBIS, LPJ, SDGVM, TRIFFID, and VECODE) used the same resolution as the general circulation model (GCM) that provided the climate data, 3.75 deg longitude x 2.5 deg latitude, a total of 1631 land grid cells. Sometimes lattice distances are specified in kilometers rather than angular measure, especially for finer grains, so a project like VEMAP {{Cite web |title=Vegetation-Ecosystem Modeling and Analysis Project |url=http://www.cgd.ucar.edu/vemap/ |website=cgd.ucar.edu}} is often referred to as 50 km grain.
Several DGVMs appeared in the middle 1990s. The first was apparently IBIS (Foley et al., 1996), VECODE (Brovkin et al., 1997), followed by several others described below:
Groups
Several DGVMs have been developed by various research groups around the world:
- LPJSitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ Dynamic Global Vegetation Model. Global Change Biology 9, 161–185.{{Cite web |url=http://www.pik-potsdam.de/research/cooperations/lpjweb/ |title=LPJ & LPJML Web Distribution Portal — PIK Research Portal |access-date=2011-01-08 |archive-url=https://web.archive.org/web/20101213071217/http://www.pik-potsdam.de/research/cooperations/lpjweb |archive-date=2010-12-13 |url-status=dead }} – Germany, Sweden
- IBIS – Integrated Biosphere Simulator{{Cite journal |last=Foley |first=Jonathan A. |last2=Prentice |first2=I. Colin |last3=Ramankutty |first3=Navin |last4=Levis |first4=Samuel |last5=Pollard |first5=David |last6=Sitch |first6=Steven |last7=Haxeltine |first7=Alex |date=December 1996 |title=An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics |url=http://doi.wiley.com/10.1029/96GB02692 |journal=Global Biogeochemical Cycles |language=en |volume=10 |issue=4 |pages=603–628 |doi=10.1029/96GB02692|url-access=subscription }}{{Cite journal |last=Kucharik |first=Christopher J. |last2=Foley |first2=Jonathan A. |last3=Delire |first3=Christine |last4=Fisher |first4=Veronica A. |last5=Coe |first5=Michael T. |last6=Lenters |first6=John D. |last7=Young-Molling |first7=Christine |last8=Ramankutty |first8=Navin |last9=Norman |first9=John M. |last10=Gower |first10=Stith T. |date=September 2000 |title=Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure |url=http://doi.wiley.com/10.1029/1999GB001138 |journal=Global Biogeochemical Cycles |language=en |volume=14 |issue=3 |pages=795–825 |doi=10.1029/1999GB001138|url-access=subscription }}{{Cite web |title=ORNL DAAC for Biogeochemical Dynamics |url=https://daac.ornl.gov/ |access-date=2023-09-07 |website=daac.ornl.gov}} – U.S.
- MC1{{Cite journal |last=Bachelet |first=Dominique |last2=Lenihan |first2=James M. |last3=Daly |first3=Christopher |last4=Neilson |first4=Ronald P. |last5=Ojima |first5=Dennis S. |last6=Parton |first6=William J. |date=2001 |title=MC1: a dynamic vegetation model for estimating the distribution of vegetation and associated carbon, nutrients, and water—technical documentation. Version 1.0. |url=https://research.fs.usda.gov/treesearch/2923 |journal=Gen. Tech. Rep. PNW-GTR-508. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 95 p |language=en |volume=508 |doi=10.2737/PNW-GTR-508|url-access=subscription }}{{Cite journal |last=Daly |first=Christopher |last2=Bachelet |first2=Dominique |last3=Lenihan |first3=James M. |last4=Neilson |first4=Ronald P. |last5=Parton |first5=William |last6=Ojima |first6=Dennis |date=2000 |title=Dynamic Simulation of Tree-Grass Interactions for Global Change Studies |url=https://www.jstor.org/stable/2641106 |journal=Ecological Applications |volume=10 |issue=2 |pages=449–469 |doi=10.2307/2641106 |issn=1051-0761|url-access=subscription }}{{Cite web |date=2018-06-20 |title=MC1 Dynamic Vegetation Model |url=https://www.fsl.orst.edu/dgvm/ |access-date=2023-09-07 |website=fsl.orst.edu/dgvm |archive-date=2018-06-20 |archive-url=https://web.archive.org/web/20180620101353/https://www.fsl.orst.edu/dgvm/ |url-status=bot: unknown }} – U.S.
- HYBRID{{Cite journal |last=Friend |first=A. D. |last2=Stevens |first2=A. K. |last3=Knox |first3=R. G. |last4=Cannell |first4=M. G. R. |date=1997-02-14 |title=A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0) |url=https://www.sciencedirect.com/science/article/pii/S0304380096000348 |journal=Ecological Modelling |volume=95 |issue=2 |pages=249–287 |doi=10.1016/S0304-3800(96)00034-8 |issn=0304-3800|url-access=subscription }} – U.K.
- SDGVM{{Cite journal |last=Woodward |first=F. I. |last2=Lomas |first2=M. R. |last3=Betts |first3=R. A. |date=1998-01-29 |editor-last=Beerling |editor-first=D. J. |editor2-last=Chaloner |editor2-first=W. G. |editor3-last=Woodward |editor3-first=F. I. |title=Vegetation-climate feedbacks in a greenhouse world |url=https://royalsocietypublishing.org/doi/10.1098/rstb.1998.0188 |journal=Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences |language=en |volume=353 |issue=1365 |pages=29–39 |doi=10.1098/rstb.1998.0188 |issn=0962-8436 |pmc=1692170}} – U.K.
- SEIB-DGVM{{Cite web |last=Sato |first=Hisashi |title=Spatially Explicit Individual Based - Dynamic Global Vegetation Model |url=http://seib-dgvm.com/ |access-date=2023-09-07 |website=Yokohama Institute for Earth Sciences seib-dgvm.com}} – Japan
- TRIFFID{{cite web |url=http://www.metoffice.gov.uk/research/hadleycentre/models/carbon_cycle/models_terrest.html |title=Hadley Centre: Carbon cycle models |website=www.metoffice.gov.uk |url-status=dead |archive-url=https://web.archive.org/web/20010822010330/http://www.metoffice.gov.uk/research/hadleycentre/models/carbon_cycle/models_terrest.html |archive-date=2001-08-22}} – U.K.
- VECODE{{Cite journal |last=Brovkin |first=Victor |last2=Ganopolski |first2=Andrei |last3=Svirezhev |first3=Yuri |date=1997-08-15 |title=A continuous climate-vegetation classification for use in climate-biosphere studies |url=https://www.sciencedirect.com/science/article/pii/S0304380097000495 |journal=Ecological Modelling |volume=101 |issue=2 |pages=251–261 |doi=10.1016/S0304-3800(97)00049-5 |issn=0304-3800|hdl=11858/00-001M-0000-0023-E605-4 |hdl-access=free }} – Germany
- CLM-DVGM{{Cite report |url=http://opensky.ucar.edu/islandora/object/technotes:432 |title=The Community Land Model's Dynamic Global Vegetation Model (CLM-DGVM): Technical description and user's guide |last=Levis |first=Samuel |last2=Bonan |first2=Gordon |date=2004 |publisher=UCAR/NCAR |doi=10.5065/d6p26w36 |pages=1505 KB |language=en |last3=Vertenstein |first3=Mariana |last4=Oleson |first4=Keith}} – U.S.
- Ecosystem Demography (ED,{{Cite journal |last=Moorcroft |first=P. R. |last2=Hurtt |first2=G. C. |last3=Pacala |first3=S. W. |date=November 2001 |title=A METHOD FOR SCALING VEGETATION DYNAMICS: THE ECOSYSTEM DEMOGRAPHY MODEL (ED) |url=http://doi.wiley.com/10.1890/0012-9615(2001)071[0557:AMFSVD]2.0.CO;2 |journal=Ecological Monographs |language=en |volume=71 |issue=4 |pages=557–586 |doi=10.1890/0012-9615(2001)071[0557:AMFSVD]2.0.CO;2 |issn=0012-9615|url-access=subscription }} ED2{{Cite journal |last=Medvigy |first=D. |last2=Wofsy |first2=S. C. |last3=Munger |first3=J. W. |last4=Hollinger |first4=D. Y. |last5=Moorcroft |first5=P. R. |date=March 2009 |title=Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2 |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2008JG000812 |journal=Journal of Geophysical Research: Biogeosciences |language=en |volume=114 |issue=G1 |doi=10.1029/2008JG000812 |issn=0148-0227|doi-access=free }})
- VEGAS{{cite journal |last1=Zeng |first1=Ning |title=Glacial-interglacial atmospheric CO2 change—The glacial burial hypothesis |journal=Advances in Atmospheric Sciences |date=September 2003 |volume=20 |issue=5 |pages=677–693 |doi=10.1007/BF02915395|bibcode=2003AdAtS..20..677N |s2cid=15094502 }}{{Cite web |title=UMD Earth system model |url=https://www.atmos.umd.edu/~cabo/CABO.html |website=atmos.umd.edu}} – U.S.
The next generation of models – Earth system models (ex. CCSM,{{Cite web |title=Community Climate System Model (CCSM) {{!}} Community Earth System Model |url=https://www.cesm.ucar.edu/models/ccsm |access-date=2023-09-07 |website=www.cesm.ucar.edu}} ORCHIDEE,{{Cite web |url=http://orchidee.ipsl.jussieu.fr/ |title=French Global Land Surface Model - Home |access-date=2008-11-23 |archive-url=https://web.archive.org/web/20081111025038/http://orchidee.ipsl.jussieu.fr/ |archive-date=2008-11-11 |url-status=dead }} JULES,{{cite web |url=http://www.jchmr.org/jules |title=Joint UK Land Environment Simulator - JULES |website=www.jchmr.org |url-status=dead |archive-url=https://web.archive.org/web/20070202015408/http://www.jchmr.org/jules/ |archive-date=2007-02-02}} CTEM{{Cite web |date=2019-06-03 |title=The Canadian Terrestrial Ecosystem Model (CTEM) |url=https://cccma.gitlab.io/classic_pages/info/ctem/ |access-date=2023-09-07 |website=CLASSIC |language=en-us}} ) – now includes the important feedbacks from the biosphere to the atmosphere so that vegetation shifts and changes in the carbon and hydrological cycles affect the climate.
DGVMs commonly simulate a variety of plant and soil physiological processes. The processes simulated by various DGVMs are summarized in the table below.
Abbreviations are: NPP, net primary production; PFT, plant functional type; SAW, soil available water; LAI, leaf area index; I, solar radiation; T, air temperature; Wr, root zone water supply; PET, potential evapotranspiration; vegc, total live vegetation carbon.
References
{{reflist}}