emodin
{{cs1 config|name-list-style=vanc}}
{{Use dmy dates|date=March 2020}}
{{chembox
| Watchedfields = changed
| verifiedrevid = 443722128
| ImageFile = Emodin.svg
| ImageSize =
| ImageName = Skeletal formula
| ImageFile1 = Emodin-3D-balls.png
| ImageSize1 =
| ImageName1 = Ball-and-stick model
| PIN = 1,3,8-Trihydroxy-6-methylanthracene-9,10-dione
| OtherNames = 6-Methyl-1,3,8-trihydroxyanthraquinone
| Section1 = {{Chembox Identifiers
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 3107
| KEGG_Ref = {{keggcite|correct|kegg}}
| KEGG = C10343
| InChI = 1/C15H10O5/c1-6-2-8-12(10(17)3-6)15(20)13-9(14(8)19)4-7(16)5-11(13)18/h2-5,16-18H,1H3
| InChIKey = RHMXXJGYXNZAPX-UHFFFAOYAD
| ChEMBL_Ref = {{ebicite|correct|EBI}}
| ChEMBL = 289277
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| StdInChI = 1S/C15H10O5/c1-6-2-8-12(10(17)3-6)15(20)13-9(14(8)19)4-7(16)5-11(13)18/h2-5,16-18H,1H3
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey = RHMXXJGYXNZAPX-UHFFFAOYSA-N
| CASNo_Ref = {{cascite|correct|CAS}}
| CASNo =518-82-1
| PubChem =3220
| DrugBank_Ref = {{drugbankcite|correct|drugbank}}
| DrugBank = DB07715
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII = KA46RNI6HN
| ChEBI_Ref = {{ebicite|correct|EBI}}
| ChEBI = 42223
| SMILES = O=C2c1cc(cc(O)c1C(=O)c3c2cc(O)cc3O)C
}}
| Section2 = {{Chembox Properties
| C=15 | H=10 | O=5
| Appearance = Orange solid
| Density = 1.583±0.06 g/cm3
| MeltingPtC = 256 to 257
| BoilingPt =
| BoilingPt_ref =
| Solubility = 4.3 x 10{{sup|-6}} mol/L
}}
| Section3 = {{Chembox Hazards
|GHSPictograms = {{GHS07|Irritant}}
|HPhrases = {{H-phrases|315|319|335|}}
|PPhrases = {{P-phrases|261|264|264+265|271|280|302+352|304+340|305+351+338|319|321|332+317|337+317|362+364|403+233|405|501|}}
| MainHazards =
| FlashPt =
| AutoignitionPt =
}}
}}
Emodin (6-methyl-1,3,8-trihydroxyanthraquinone) is an organic compound. Classified as an anthraquinone, it can be isolated from rhubarb, buckthorn, and Japanese knotweed (Reynoutria japonica syn. Polygonum cuspidatum).Dorland's Medical Dictionary (1938) Emodin is particularly abundant in the roots of the Chinese rhubarb (Rheum palmatum), knotweed and knotgrass (Polygonum cuspidatum and Polygonum multiflorum) as well as Hawaii ‘au‘auko‘i cassia seeds or coffee weed (Semen cassia).{{Cite journal |doi=10.3390/app10186358 |s2cid=224994102|doi-access=free|title=Preventing the Interaction between Coronaviruses Spike Protein and Angiotensin I Converting Enzyme 2: An in Silico Mechanistic Case Study on Emodin as a Potential Model Compound|year=2020| vauthors = Dellafiora L, Dorne JL, Galaverna G, Dall'Asta C |journal=Applied Sciences|volume=10|issue=18|page=6358}} It is specifically isolated from Rheum palmatum L.{{cite book | vauthors = Tsay HS, Shyur LF, Agrawal DC, Wu YC, Wang SY |title=Medicinal Plants – Recent Advances in Research and Development |date=3 November 2017 |location=Singapore |publisher=Springer Singapore |isbn=978-981-10-5978-0 |pages=339 |url=https://books.google.com/books?id=D-Q8DwAAQBAJ}} It is also produced by many species of fungi, including members of the genera Aspergillus, Pyrenochaeta, and Pestalotiopsis, inter alia. The common name is derived from Rheum emodi, a taxonomic synonym of Rheum australe (Himalayan rhubarb), and synonyms include emodol, frangula emodin, rheum emodin, 3-methyl-1,6,8-trihydroxyanthraquinone, Schüttgelb (Schuttgelb), and Persian Berry Lake.{{PubChem|3220}}
Pharmacology
Emodin is an active component of several plants used in traditional Chinese medicine (TCM) such as Rheum palmatum, Polygonum cuspidatum, and Polygonum multiflorum. It has various actions including laxative, anticancer, antibacterial and antiinflammatory effects,{{cite journal | vauthors = Dong X, Fu J, Yin X, Cao S, Li X, Lin L, Ni J | title = Emodin: A Review of its Pharmacology, Toxicity and Pharmacokinetics | journal = Phytotherapy Research | volume = 30 | issue = 8 | pages = 1207–18 | date = August 2016 | pmid = 27188216 | pmc = 7168079 | doi = 10.1002/ptr.5631 }}{{cite book | vauthors = Monisha BA, Kumar N, Tiku AB | title = Anti-inflammatory Nutraceuticals and Chronic Diseases | chapter = Emodin and Its Role in Chronic Diseases | series = Advances in Experimental Medicine and Biology | volume = 928 | pages = 47–73 | year = 2016 | pmid = 27671812 | doi = 10.1007/978-3-319-41334-1_3 | isbn = 978-3-319-41332-7 }}{{Cite journal |last1=Hsu |first1=Shu-Chun |last2=Chung |first2=Jing-Gung |date=2012-09-01 |title=Anticancer potential of emodin |journal=BioMedicine |volume=2 |issue=3 |pages=108–116 |doi=10.1016/j.biomed.2012.03.003 |issn=2211-8020 |pmc=7104001 |pmid=32289000}} and has also been identified as having potential antiviral activity against coronaviruses such as SARS-CoV-2,{{cite journal | vauthors = Ho TY, Wu SL, Chen JC, Li CC, Hsiang CY | title = Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction | journal = Antiviral Research | volume = 74 | issue = 2 | pages = 92–101 | date = May 2007 | pmid = 16730806 | pmc = 7114332 | doi = 10.1016/j.antiviral.2006.04.014 }}{{cite journal | vauthors = Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F | title = Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2 | journal = Cell Discovery | volume = 6 | pages = 14 | year = 2020 | pmid = 32194980 | pmc = 7073332 | doi = 10.1038/s41421-020-0153-3 | doi-access = free }} being one of the major active components of the antiviral TCM formulation Lianhua Qingwen.{{cite journal | vauthors = Wang CH, Zhong Y, Zhang Y, Liu JP, Wang YF, Jia WN, Wang GC, Li Z, Zhu Y, Gao XM | display-authors = 6 | title = A network analysis of the Chinese medicine Lianhua-Qingwen formula to identify its main effective components | journal = Molecular BioSystems | volume = 12 | issue = 2 | pages = 606–13 | date = February 2016 | pmid = 26687282 | doi = 10.1039/c5mb00448a }}{{cite journal | vauthors = Runfeng L, Yunlong H, Jicheng H, Weiqi P, Qinhai M, Yongxia S, Chufang L, Jin Z, Zhenhua J, Haiming J, Kui Z, Shuxiang H, Jun D, Xiaobo L, Xiaotao H, Lin W, Nanshan Z, Zifeng Y | display-authors = 6 | title = Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2) | journal = Pharmacological Research | volume = 156 | pages = 104761 | date = June 2020 | pmid = 32205232 | pmc = 7102548 | doi = 10.1016/j.phrs.2020.104761 }}
Emodin has been shown to inhibit the ion channel of protein 3a, which could play a role in the release of the virus from infected cells.{{cite journal | vauthors = Schwarz S, Wang K, Yu W, Sun B, Schwarz W | title = Emodin inhibits current through SARS-associated coronavirus 3a protein | journal = Antiviral Research | volume = 90 | issue = 1 | pages = 64–9 | date = April 2011 | pmid = 21356245 | pmc = 7114100 | doi = 10.1016/j.antiviral.2011.02.008 }}
List of species
The following plant species are known to produce emodin:
- Acalypha australis{{cite journal | vauthors = Wang XL, Yu KB, Peng SL | title = [Chemical constituents of aerial part of Acalypha australis] | language = Chinese | journal = Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China Journal of Chinese Materia Medica | volume = 33 | issue = 12 | pages = 1415–7 | date = June 2008 | pmid = 18837345 | trans-title = Chemical Constituents of Aerial Part of Acalypha australis }}
- Cassia occidentalis{{cite journal | vauthors = Yadav JP, Arya V, Yadav S, Panghal M, Kumar S, Dhankhar S | title = Cassia occidentalis L.: a review on its ethnobotany, phytochemical and pharmacological profile | journal = Fitoterapia | volume = 81 | issue = 4 | pages = 223–30 | date = June 2010 | pmid = 19796670 | doi = 10.1016/j.fitote.2009.09.008 }}
- Cassia siamea{{cite journal | vauthors = Nsonde Ntandou GF, Banzouzi JT, Mbatchi B, Elion-Itou RD, Etou-Ossibi AW, Ramos S, Benoit-Vical F, Abena AA, Ouamba JM | display-authors = 6 | title = Analgesic and anti-inflammatory effects of Cassia siamea Lam. stem bark extracts | journal = Journal of Ethnopharmacology | volume = 127 | issue = 1 | pages = 108–11 | date = January 2010 | pmid = 19799981 | doi = 10.1016/j.jep.2009.09.040 }}
- Frangula alnus{{Cite journal |vauthors=Kremer D, Kosalec I, Locatelli M, Epifano F, Genovese S, Carlucci G, Končić MZ |date=April 2012 |title=Anthraquinone profiles, antioxidant and antimicrobial properties of Frangula rupestris (Scop.) Schur and Frangula alnus Mill. bark |url=https://www.sciencedirect.com/science/article/abs/pii/S0308814611013719 |journal=Food Chemistry |volume=131 |issue=4 |pages=1174–1180 |doi=10.1016/j.foodchem.2011.09.094}}
- Glossostemon bruguieri{{cite journal | vauthors = Meselhy MR | title = Constituents from Moghat, the Roots of Glossostemon bruguieri (Desf.) | journal = Molecules | date = August 2003 | volume = 8 | issue = 8 | pages = 614–621 | doi = 10.3390/80800614 | pmc = 6146927 | doi-access = free }}
- Kalimeris indica{{cite journal | vauthors = Wang G, Wang GK, Liu JS, Yu B, Wang F, Liu JK | title = [Studies on the chemical constituents of Kalimeris indica] | language = Chinese | journal = Zhong Yao Cai = Zhongyaocai = Journal of Chinese Medicinal Materials | volume = 33 | issue = 4 | pages = 551–4 | date = April 2010 | pmid = 20845783 | trans-title = Studies on the Chemical Constituents of Kalimeris indica }}
- Polygonum hypoleucum{{cite journal | vauthors = Chao PM, Kuo YH, Lin YS, Chen CH, Chen SW, Kuo YH | title = The metabolic benefits of Polygonum hypoleucum Ohwi in HepG2 cells and Wistar rats under lipogenic stress | journal = Journal of Agricultural and Food Chemistry | volume = 58 | issue = 8 | pages = 5174–80 | date = April 2010 | pmid = 20230058 | doi = 10.1021/jf100046h | bibcode = 2010JAFC...58.5174C | url = http://ntur.lib.ntu.edu.tw/bitstream/246246/239385/-1/371.pdf }}
- Reynoutria japonica (syn. Fallopia japonica){{cite web | title = Reynoutria japonica (Polygonaceae) | url = https://phytochem.nal.usda.gov/phytochem/ethnoPlants/show/6292?et= | work = Dr. Duke's Phytochemical and Ethnobotanical Databases | publisher = U.S. Department of Agriculture }} (syn. Polygonum cuspidatum{{cite journal | vauthors = Ban SH, Kwon YR, Pandit S, Lee YS, Yi HK, Jeon JG | title = Effects of a bio-assay guided fraction from Polygonum cuspidatum root on the viability, acid production and glucosyltranferase of mutans streptococci | journal = Fitoterapia | volume = 81 | issue = 1 | pages = 30–4 | date = January 2010 | pmid = 19616082 | doi = 10.1016/j.fitote.2009.06.019 }})
- Rhamnus alnifolia, the alderleaf buckthorn
- Rhamnus cathartica, the common buckthorn{{Cite journal | last1 = Sacerdote | first1 = Allison B. | last2 = King | first2 = Richard B. | title = Direct Effects of an Invasive European Buckthorn Metabolite on Embryo Survival and Development in Xenopus laevis and Pseudacris triseriata | journal = Journal of Herpetology | volume = 48 | issue = 1 | pages = 51–58 | year = 2014 | doi = 10.1670/12-066 | s2cid = 62818226 | url = http://www.cnah.org/pdf/88516.pdf }}
- Rheum palmatum{{cite journal | vauthors = Liu A, Chen H, Wei W, Ye S, Liao W, Gong J, Jiang Z, Wang L, Lin S | display-authors = 6 | title = Antiproliferative and antimetastatic effects of emodin on human pancreatic cancer | journal = Oncology Reports | volume = 26 | issue = 1 | pages = 81–9 | date = July 2011 | pmid = 21491088 | doi = 10.3892/or.2011.1257 | doi-access = free }}
- Rumex nepalensis{{cite journal | vauthors = Gautam R, Karkhile KV, Bhutani KK, Jachak SM | title = Anti-inflammatory, cyclooxygenase (COX)-2, COX-1 inhibitory, and free radical scavenging effects of Rumex nepalensis | journal = Planta Medica | volume = 76 | issue = 14 | pages = 1564–9 | date = October 2010 | pmid = 20379952 | doi = 10.1055/s-0030-1249779 | s2cid = 260253513 }}
- Senna obtusifolia{{cite web | title = Senna obtusifolia (Fabaceae) | url = https://phytochem.nal.usda.gov/phytochem/plants/show/1815?et= | work = Dr. Duke's Phytochemical and Ethnobotanical Databases | publisher = U.S. Department of Agriculture }} (syn. Cassia obtusifolia{{cite journal | vauthors = Yang YC, Lim MY, Lee HS | title = Emodin isolated from Cassia obtusifolia (Leguminosae) seed shows larvicidal activity against three mosquito species | journal = Journal of Agricultural and Food Chemistry | volume = 51 | issue = 26 | pages = 7629–31 | date = December 2003 | pmid = 14664519 | doi = 10.1021/jf034727t | bibcode = 2003JAFC...51.7629Y }})
- Thielavia subthermophila{{cite journal | vauthors = Kusari S, Zühlke S, Kosuth J, Cellárová E, Spiteller M | title = Light-independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis | journal = Journal of Natural Products | volume = 72 | issue = 10 | pages = 1825–35 | date = October 2009 | pmid = 19746917 | doi = 10.1021/np9002977 }}
- Ventilago madraspatana{{cite journal | vauthors = Ghosh S, Das Sarma M, Patra A, Hazra B | title = Anti-inflammatory and anticancer compounds isolated from Ventilago madraspatana Gaertn., Rubia cordifolia Linn. and Lantana camara Linn | journal = The Journal of Pharmacy and Pharmacology | volume = 62 | issue = 9 | pages = 1158–66 | date = September 2010 | pmid = 20796195 | doi = 10.1111/j.2042-7158.2010.01151.x | s2cid = 25769269 | doi-access = free }}
Emodin also occurs in variable amounts in members of the crustose lichen genus Catenarina.{{cite journal |last1=Søchting |first1=Ulrik |last2=Søgaard |first2=Majbrit Zeuthen |last3=Elix |first3=John A. |last4=Arup |first4=Ulf | last5=Elvebakk |first5=Arve |last6=sancho |first6=Leopoldo G. |title=Catenarina (Teloschistaceae, Ascomycota), a new Southern Hemisphere genus with 7-chlorocatenarin |journal=The Lichenologist |volume=46 |issue=2 |year=2014 |doi=10.1017/s002428291300087x |pages=175–187 |s2cid=83906534}}
Compendial status
|last=The British Pharmacopoeia Secretariat
|title=Index, BP 2009
|year=2009
|url=http://www.pharmacopoeia.co.uk/pdf/2009_index.pdf
|access-date=20 April 2010
|url-status=dead
|archive-url=https://web.archive.org/web/20090411071437/http://www.pharmacopoeia.co.uk/pdf/2009_index.pdf
|archive-date=11 April 2009
}}