error function

{{Short description|Sigmoid shape special function}}

{{Use dmy dates|date=March 2023}}

{{Distinguish|Loss function}}

In mathematics, the error function (also called the Gauss error function), often denoted by {{math|erf}}, is a function \mathrm{erf}: \mathbb{C} \to \mathbb{C} defined as:{{cite book|last =Andrews|first = Larry C.|url = https://books.google.com/books?id=2CAqsF-RebgC&pg=PA110 |title = Special functions of mathematics for engineers|page = 110|publisher = SPIE Press |date= 1998|isbn = 9780819426161}}

\operatorname{erf} z = \frac{2}{\sqrt\pi}\int_0^z e^{-t^2}\,\mathrm dt.

{{Infobox mathematical function

| name = Error function

| image = Error Function.svg

| imagesize = 400px

| imagealt = Plot of the error function over real numbers

| caption = Plot of the error function over real numbers

| general_definition = \operatorname{erf} z = \frac{2}{\sqrt\pi}\int_0^z e^{-t^2}\,\mathrm dt

| fields_of_application = Probability, thermodynamics, digital communications

| domain = \mathbb{C}

| range = \left( -1,1 \right)

| parity = Odd

| root = 0

| derivative = \frac{\mathrm d}{\mathrm dz}\operatorname{erf} z = \frac{2}{\sqrt\pi} e^{-z^2}

| antiderivative = \int \operatorname{erf} z\,dz = z \operatorname{erf} z + \frac{e^{-z^2}}{\sqrt\pi} + C

| taylor_series = \operatorname{erf} z = \frac{2}{\sqrt\pi} \sum_{n=0}^\infty \frac{(-1)^n}{2n+1} \frac{z^{2n+1}}{n!}

}}

The integral here is a complex contour integral which is path-independent because \exp(-t^2) is holomorphic on the whole complex plane \mathbb{C}. In many applications, the function argument is a real number, in which case the function value is also real.

In some old texts,{{cite book |last1=Whittaker |first1=Edmund Taylor |title=A Course of Modern Analysis |title-link=A Course of Modern Analysis |last2=Watson |first2=George Neville |date=2021 |publisher=Cambridge University Press |isbn=978-1-316-51893-9 |editor-last=Moll |editor-first=Victor Hugo |editor-link=Victor Hugo Moll |edition=5th revised |page=358 |authorlink1=Edmund T. Whittaker |authorlink2=George N. Watson}}

the error function is defined without the factor of \frac{2}{\sqrt{\pi}}.

This nonelementary integral is a sigmoid function that occurs often in probability, statistics, and partial differential equations.

In statistics, for non-negative real values of {{mvar|x}}, the error function has the following interpretation: for a real random variable {{mvar|Y}} that is normally distributed with mean 0 and standard deviation \frac{1}{\sqrt{2}}, {{math|erf x}} is the probability that {{mvar|Y}} falls in the range {{closed-closed|−x, x}}.

Two closely related functions are the complementary error function \mathrm{erfc}: \mathbb{C} \to \mathbb{C} is defined as

\operatorname{erfc} z = 1 - \operatorname{erf} z,

and the imaginary error function \mathrm{erfi}: \mathbb{C} \to \mathbb{C} is defined as

\operatorname{erfi} z = -i\operatorname{erf} iz,

where {{mvar|i}} is the imaginary unit.

Name

The name "error function" and its abbreviation {{math|erf}} were proposed by J. W. L. Glaisher in 1871 on account of its connection with "the theory of Probability, and notably the theory of Errors."{{cite journal|last1=Glaisher|first1=James Whitbread Lee|title= On a class of definite integrals|journal=London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science|date=July 1871 |volume=42 |pages=294–302|access-date=6 December 2017|url=https://books.google.com/books?id=8Po7AQAAMAAJ&pg=RA1-PA294 |number=277 |series=4 |doi=10.1080/14786447108640568}} The error function complement was also discussed by Glaisher in a separate publication in the same year.{{cite journal|last1=Glaisher|first1=James Whitbread Lee|title=On a class of definite integrals. Part II|journal=London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science|date=September 1871 |volume=42|pages=421–436|access-date=6 December 2017|url=https://books.google.com/books?id=yJ1YAAAAcAAJ&pg=PA421 |series=4 |number=279 |doi=10.1080/14786447108640600}}

For the "law of facility" of errors whose density is given by

f(x) = \left(\frac{c}{\pi}\right)^{1/2} e^{-c x^2}

(the normal distribution), Glaisher calculates the probability of an error lying between {{mvar|p}} and {{mvar|q}} as:

\left(\frac{c}{\pi}\right)^\frac{1}{2} \int_p^qe^{-cx^2}\,\mathrm dx = \tfrac{1}{2}\left(\operatorname{erf} \left(q\sqrt{c}\right) -\operatorname{erf} \left(p\sqrt{c}\right)\right).

File:Plot of the error function Erf(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg

Applications

When the results of a series of measurements are described by a normal distribution with standard deviation {{mvar|σ}} and expected value 0, then {{math|erf ({{sfrac|a|σ {{sqrt|2}}}})}} is the probability that the error of a single measurement lies between {{math|−a}} and {{math|+a}}, for positive {{mvar|a}}. This is useful, for example, in determining the bit error rate of a digital communication system.

The error and complementary error functions occur, for example, in solutions of the heat equation when boundary conditions are given by the Heaviside step function.

The error function and its approximations can be used to estimate results that hold with high probability or with low probability. Given a random variable {{math|X ~ Norm[μ,σ]}} (a normal distribution with mean {{mvar|μ}} and standard deviation {{mvar|σ}}) and a constant {{math|L > μ}}, it can be shown via integration by substitution:

\begin{align}

\Pr[X\leq L] &= \frac{1}{2} + \frac{1}{2} \operatorname{erf}\frac{L-\mu}{\sqrt{2}\sigma} \\

&\approx A \exp \left(-B \left(\frac{L-\mu}{\sigma}\right)^2\right)

\end{align}

where {{mvar|A}} and {{mvar|B}} are certain numeric constants. If {{mvar|L}} is sufficiently far from the mean, specifically {{math|μLσ{{sqrt|ln k}}}}, then:

\Pr[X\leq L] \leq A \exp (-B \ln{k}) = \frac{A}{k^B}

so the probability goes to 0 as {{math|k → ∞}}.

The probability for {{mvar|X}} being in the interval {{closed-closed|La, Lb}} can be derived as

\begin{align}

\Pr[L_a\leq X \leq L_b] &= \int_{L_a}^{L_b} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \,\mathrm dx \\

&= \frac{1}{2}\left(\operatorname{erf}\frac{L_b-\mu}{\sqrt{2}\sigma} - \operatorname{erf}\frac{L_a-\mu}{\sqrt{2}\sigma}\right).\end{align}

Properties

{{multiple image

| header = Plots in the complex plane

| direction = vertical

| width = 250

| image1 = ComplexExp2.png

| caption1 = Integrand {{math|exp(−z2)}}

| image2 = ComplexErfz.png

| caption2 = {{math|erf z}}

}}

The property {{math|1=erf (−z) = −erf z}} means that the error function is an odd function. This directly results from the fact that the integrand {{math|et2}} is an even function (the antiderivative of an even function which is zero at the origin is an odd function and vice versa).

Since the error function is an entire function which takes real numbers to real numbers, for any complex number {{mvar|z}}:

\operatorname{erf} \overline{z} = \overline{\operatorname{erf} z}

where \overline{z}

denotes the complex conjugate of z.

The integrand {{math|1=f = exp(−z2)}} and {{math|1=f = erf z}} are shown in the complex {{mvar|z}}-plane in the figures at right with domain coloring.

The error function at {{math|+∞}} is exactly 1 (see Gaussian integral). At the real axis, {{math|erf z}} approaches unity at {{math|z → +∞}} and −1 at {{math|z → −∞}}. At the imaginary axis, it tends to {{math|±i∞}}.

=Taylor series=

The error function is an entire function; it has no singularities (except that at infinity) and its Taylor expansion always converges. For {{math|x >> 1}}, however, cancellation of leading terms makes the Taylor expansion unpractical.

The defining integral cannot be evaluated in closed form in terms of elementary functions (see Liouville's theorem), but by expanding the integrand {{math|ez2}} into its Maclaurin series and integrating term by term, one obtains the error function's Maclaurin series as:

\begin{align}

\operatorname{erf} z

&= \frac{2}{\sqrt\pi}\sum_{n=0}^\infty\frac{(-1)^n z^{2n+1}}{n! (2n+1)} \\[6pt]

&= \frac{2}{\sqrt\pi} \left(z-\frac{z^3}{3}+\frac{z^5}{10}-\frac{z^7}{42}+\frac{z^9}{216}-\cdots\right)

\end{align}

which holds for every complex number {{mvar|z}}. The denominator terms are sequence A007680 in the OEIS.

For iterative calculation of the above series, the following alternative formulation may be useful:

\begin{align}

\operatorname{erf} z

&= \frac{2}{\sqrt\pi}\sum_{n=0}^\infty\left(z \prod_{k=1}^n {\frac{-(2k-1) z^2}{k (2k+1)}}\right) \\[6pt]

&= \frac{2}{\sqrt\pi} \sum_{n=0}^\infty \frac{z}{2n+1} \prod_{k=1}^n \frac{-z^2}{k}

\end{align}

because {{math|{{sfrac|−(2k − 1)z2|k(2k + 1)}}}} expresses the multiplier to turn the {{mvar|k}}th term into the {{math|(k + 1)}}th term (considering {{mvar|z}} as the first term).

The imaginary error function has a very similar Maclaurin series, which is:

\begin{align}

\operatorname{erfi} z

&= \frac{2}{\sqrt\pi}\sum_{n=0}^\infty\frac{z^{2n+1}}{n! (2n+1)} \\[6pt]

&=\frac{2}{\sqrt\pi} \left(z+\frac{z^3}{3}+\frac{z^5}{10}+\frac{z^7}{42}+\frac{z^9}{216}+\cdots\right)

\end{align}

which holds for every complex number {{mvar|z}}.

=Derivative and integral=

The derivative of the error function follows immediately from its definition:

\frac{\mathrm d}{\mathrm dz}\operatorname{erf} z =\frac{2}{\sqrt\pi} e^{-z^2}.

From this, the derivative of the imaginary error function is also immediate:

\frac{d}{dz}\operatorname{erfi} z =\frac{2}{\sqrt\pi} e^{z^2}.

An antiderivative of the error function, obtainable by integration by parts, is

z\operatorname{erf}z + \frac{e^{-z^2}}{\sqrt\pi}.

An antiderivative of the imaginary error function, also obtainable by integration by parts, is

z\operatorname{erfi}z - \frac{e^{z^2}}{\sqrt\pi}.

Higher order derivatives are given by

\operatorname{erf}^{(k)}z = \frac{2 (-1)^{k-1}}{\sqrt\pi} \mathit{H}_{k-1}(z) e^{-z^2} = \frac{2}{\sqrt\pi} \frac{\mathrm d^{k-1}}{\mathrm dz^{k-1}} \left(e^{-z^2}\right),\qquad k=1, 2, \dots

where {{mvar|H}} are the physicists' Hermite polynomials.{{mathworld|title=Erf|urlname=Erf}}

=Bürmann series=

An expansion,{{cite journal|first1=H. M. |last1=Schöpf |first2=P. H. |last2=Supancic |title=On Bürmann's Theorem and Its Application to Problems of Linear and Nonlinear Heat Transfer and Diffusion |journal=The Mathematica Journal |year=2014 |volume=16 |doi=10.3888/tmj.16-11 |url=http://www.mathematica-journal.com/2014/11/on-burmanns-theorem-and-its-application-to-problems-of-linear-and-nonlinear-heat-transfer-and-diffusion/#more-39602/|doi-access=free }} which converges more rapidly for all real values of {{mvar|x}} than a Taylor expansion, is obtained by using Hans Heinrich Bürmann's theorem:{{mathworld|urlname=BuermannsTheorem | title = Bürmann's Theorem }}

\begin{align}

\operatorname{erf} x

&= \frac{2}{\sqrt\pi} \sgn x \cdot \sqrt{1-e^{-x^2}} \left( 1-\frac{1}{12} \left (1-e^{-x^2} \right ) -\frac{7}{480} \left (1-e^{-x^2} \right )^2 -\frac{5}{896} \left (1-e^{-x^2} \right )^3-\frac{787}{276 480} \left (1-e^{-x^2} \right )^4 - \cdots \right) \\[10pt]

&= \frac{2}{\sqrt\pi} \sgn x \cdot \sqrt{1-e^{-x^2}} \left(\frac{\sqrt\pi}{2} + \sum_{k=1}^\infty c_k e^{-kx^2} \right).

\end{align}

where {{math|sgn}} is the sign function. By keeping only the first two coefficients and choosing {{math|1=c1 = {{sfrac|31|200}}}} and {{math|1=c2 = −{{sfrac|341|8000}}}}, the resulting approximation shows its largest relative error at {{math|1=x = ±1.40587}}, where it is less than 0.0034361:

\operatorname{erf} x \approx \frac{2}{\sqrt\pi}\sgn x \cdot \sqrt{1-e^{-x^2}} \left(\frac{\sqrt{\pi}}{2} + \frac{31}{200}e^{-x^2}-\frac{341}{8000} e^{-2x^2}\right).

=Inverse functions=

File:Mplwp erf inv.svg

Given a complex number {{mvar|z}}, there is not a unique complex number {{mvar|w}} satisfying {{math|1=erf w = z}}, so a true inverse function would be multivalued. However, for {{math|−1 < x < 1}}, there is a unique real number denoted {{math|erf−1 x}} satisfying

\operatorname{erf}\left(\operatorname{erf}^{-1} x\right) = x.

The inverse error function is usually defined with domain {{open-open|−1,1}}, and it is restricted to this domain in many computer algebra systems. However, it can be extended to the disk {{math|{{abs|z}} < 1}} of the complex plane, using the Maclaurin series{{cite arXiv | last1 = Dominici | first1 = Diego | title = Asymptotic analysis of the derivatives of the inverse error function | eprint = math/0607230 | year = 2006}}

\operatorname{erf}^{-1} z=\sum_{k=0}^\infty\frac{c_k}{2k+1}\left (\frac{\sqrt\pi}{2}z\right )^{2k+1},

where {{math|1=c0 = 1}} and

\begin{align}

c_k & =\sum_{m=0}^{k-1}\frac{c_m c_{k-1-m}}{(m+1)(2m+1)} \\[1ex]

&= \left\{1,1,\frac{7}{6},\frac{127}{90},\frac{4369}{2520},\frac{34807}{16200},\ldots\right\}.

\end{align}

So we have the series expansion (common factors have been canceled from numerators and denominators):

\operatorname{erf}^{-1} z = \frac{\sqrt{\pi}}{2} \left (z + \frac{\pi}{12}z^3 + \frac{7\pi^2}{480}z^5 + \frac{127\pi^3}{40320}z^7 + \frac{4369\pi^4}{5806080} z^9 + \frac{34807\pi^5}{182476800}z^{11} + \cdots\right ).

(After cancellation the numerator and denominator values in {{oeis|A092676}} and {{oeis|A092677}} respectively; without cancellation the numerator terms are values in {{oeis|A002067}}.) The error function's value at {{math|±∞}} is equal to {{math|±1}}.

For {{math|{{abs|z}} < 1}}, we have {{math|1=erf(erf−1 z) = z}}.

The inverse complementary error function is defined as

\operatorname{erfc}^{-1}(1-z) = \operatorname{erf}^{-1} z.

For real {{mvar|x}}, there is a unique real number {{math|erfi−1 x}} satisfying {{math|1=erfi(erfi−1 x) = x}}. The inverse imaginary error function is defined as {{math|erfi−1 x}}.{{cite arXiv | last1 = Bergsma | first1 = Wicher | title = On a new correlation coefficient, its orthogonal decomposition and associated tests of independence | eprint = math/0604627 | year = 2006}}

For any real x, Newton's method can be used to compute {{math|erfi−1 x}}, and for {{math|−1 ≤ x ≤ 1}}, the following Maclaurin series converges:

\operatorname{erfi}^{-1} z =\sum_{k=0}^\infty\frac{(-1)^k c_k}{2k+1} \left( \frac{\sqrt\pi}{2} z \right)^{2k+1},

where {{math|ck}} is defined as above.

=Asymptotic expansion=

A useful asymptotic expansion of the complementary error function (and therefore also of the error function) for large real {{mvar|x}} is

\begin{align}

\operatorname{erfc} x &= \frac{e^{-x^2}}{x\sqrt{\pi}}\left(1 + \sum_{n=1}^\infty (-1)^n \frac{1\cdot3\cdot5\cdots(2n - 1)}{\left(2x^2\right)^n}\right) \\[6pt]

&= \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n - 1)!!}{\left(2x^2\right)^n},

\end{align}

where {{math|(2n − 1)!!}} is the double factorial of {{math|(2n − 1)}}, which is the product of all odd numbers up to {{math|(2n − 1)}}. This series diverges for every finite {{mvar|x}}, and its meaning as asymptotic expansion is that for any integer {{math|N ≥ 1}} one has

\operatorname{erfc} x = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^{N-1} (-1)^n \frac{(2n - 1)!!}{\left(2x^2\right)^n} + R_N(x)

where the remainder is

R_N(x) := \frac{(-1)^N \, (2 N - 1)!!}{\sqrt{\pi} \cdot 2^{N - 1}} \int_x^\infty t^{-2N}e^{-t^2}\,\mathrm dt,

which follows easily by induction, writing

e^{-t^2} = -\frac{1}{2 t} \, \frac{\mathrm{d}}{\mathrm{d}t} e^{-t^2}

and integrating by parts.

The asymptotic behavior of the remainder term, in Landau notation, is

R_N(x) = O\left(x^{- (1 + 2N)} e^{-x^2}\right)

as {{math|x → ∞}}. This can be found by

R_N(x) \propto \int_x^\infty t^{-2N}e^{-t^2}\,\mathrm dt = e^{-x^2} \int_0^\infty (t+x)^{-2N}e^{-t^2-2tx}\,\mathrm dt\leq e^{-x^2} \int_0^\infty x^{-2N} e^{-2tx}\,\mathrm dt \propto x^{-(1+2N)}e^{-x^2}.

For large enough values of {{mvar|x}}, only the first few terms of this asymptotic expansion are needed to obtain a good approximation of {{math|erfc x}} (while for not too large values of {{mvar|x}}, the above Taylor expansion at 0 provides a very fast convergence).

=Continued fraction expansion=

A continued fraction expansion of the complementary error function was found by Laplace:Pierre-Simon Laplace, Traité de mécanique céleste, tome 4 (1805), livre X, page 255.{{cite book| last1 = Cuyt | first1 = Annie A. M.|author1-link= Annie Cuyt | last2 = Petersen | first2 = Vigdis B. | last3 = Verdonk | first3 = Brigitte | last4 = Waadeland | first4 = Haakon | last5 = Jones | first5 = William B. | title = Handbook of Continued Fractions for Special Functions | publisher = Springer-Verlag | year = 2008 | isbn = 978-1-4020-6948-2 }}

\operatorname{erfc} z = \frac{z}{\sqrt\pi}e^{-z^2} \cfrac{1}{z^2+ \cfrac{a_1}{1+\cfrac{a_2}{z^2+ \cfrac{a_3}{1+\dotsb}}}},\qquad a_m = \frac{m}{2}.

=Factorial series=

The inverse factorial series:

\begin{align}

\operatorname{erfc} z

&= \frac{e^{-z^2}}{\sqrt{\pi}\,z} \sum_{n=0}^\infty \frac{\left(-1\right)^n Q_n}{{\left(z^2+1\right)}^{\bar{n}}} \\[1ex]

&= \frac{e^{-z^2}}{\sqrt{\pi}\,z} \left[1 -\frac{1}{2}\frac{1}{(z^2+1)} + \frac{1}{4}\frac{1}{\left(z^2+1\right) \left(z^2+2\right)} - \cdots \right]

\end{align}

converges for {{math|Re(z2) > 0}}. Here

\begin{align}

Q_n

&\overset{\text{def}}{{}={}}

\frac{1}{\Gamma{\left(\frac{1}{2}\right)}} \int_0^\infty \tau(\tau-1)\cdots(\tau-n+1)\tau^{-\frac{1}{2}} e^{-\tau} \,d\tau \\[1ex]

&= \sum_{k=0}^n \left(\frac{1}{2}\right)^{\bar{k}} s(n,k),

\end{align}

{{math|z{{overline|n}}}} denotes the rising factorial, and {{math|s(n,k)}} denotes a signed Stirling number of the first kind.{{cite journal|last=Schlömilch|first=Oskar Xavier | author-link=Oscar Schlömilch|year=1859|title=Ueber facultätenreihen|url=https://archive.org/details/zeitschriftfrma09runggoog | journal=Zeitschrift für Mathematik und Physik | language=de | volume=4 | pages=390–415}}{{cite book | last=Nielson | first=Niels | url=https://archive.org/details/handbuchgamma00nielrich | title=Handbuch der Theorie der Gammafunktion | date=1906 | publisher=B. G. Teubner | location=Leipzig|language=de|access-date=2017-12-04|at=p. 283 Eq. 3}}

There also exists a representation by an infinite sum containing the double factorial:

\operatorname{erf} z = \frac{2}{\sqrt\pi} \sum_{n=0}^\infty \frac{(-2)^n(2n-1)!!}{(2n+1)!}z^{2n+1}

Bounds and Numerical approximations

=Approximation with elementary functions=

  • Abramowitz and Stegun give several approximations of varying accuracy (equations 7.1.25–28). This allows one to choose the fastest approximation suitable for a given application. In order of increasing accuracy, they are:

    \operatorname{erf} x \approx 1 - \frac{1}{\left(1 + a_1x + a_2x^2 + a_3x^3 + a_4x^4\right)^4}, \qquad x \geq 0

    (maximum error: {{val|5e-4}})

    {{pb}}

    where {{math|a1 {{=}} 0.278393}}, {{math|a2 {{=}} 0.230389}}, {{math|a3 {{=}} 0.000972}}, {{math|a4 {{=}} 0.078108}}

    \operatorname{erf} x \approx 1 - \left(a_1t + a_2t^2 + a_3t^3\right)e^{-x^2},\quad t=\frac{1}{1 + px}, \qquad x \geq 0

    (maximum error: {{val|2.5e-5}})

    {{pb}}

    where {{math|p {{=}} 0.47047}}, {{math|a1 {{=}} 0.3480242}}, {{math|a2 {{=}} −0.0958798}}, {{math|a3 {{=}} 0.7478556}}

    \operatorname{erf} x \approx 1 - \frac{1}{\left(1 + a_1x + a_2x^2 + \cdots + a_6x^6\right)^{16}}, \qquad x \geq 0

    (maximum error: {{val|3e-7}})

    {{pb}}

    where {{math|a1 {{=}} 0.0705230784}}, {{math|a2 {{=}} 0.0422820123}}, {{math|a3 {{=}} 0.0092705272}}, {{math|a4 {{=}} 0.0001520143}}, {{math|a5 {{=}} 0.0002765672}}, {{math|a6 {{=}} 0.0000430638}}

    \operatorname{erf} x \approx 1 - \left(a_1t + a_2t^2 + \cdots + a_5t^5\right)e^{-x^2},\quad t = \frac{1}{1 + px}

    (maximum error: {{val|1.5e-7}})

    {{pb}}

    where {{math|p {{=}} 0.3275911}}, {{math|a1 {{=}} 0.254829592}}, {{math|a2 {{=}} −0.284496736}}, {{math|a3 {{=}} 1.421413741}}, {{math|a4 {{=}} −1.453152027}}, {{math|a5 {{=}} 1.061405429}}

    {{pb}}

    All of these approximations are valid for {{math|x ≥ 0}}. To use these approximations for negative {{mvar|x}}, use the fact that {{math|erf x}} is an odd function, so {{math|erf x {{=}} −erf(−x)}}.

  • Exponential bounds and a pure exponential approximation for the complementary error function are given by{{cite journal |url = http://campus.unibo.it/85943/1/mcddmsTranWIR2003.pdf |last1= Chiani|first1= M.|last2= Dardari|first2= D. |last3=Simon |first3= M.K.|date = 2003 |title = New Exponential Bounds and Approximations for the Computation of Error Probability in Fading Channels|journal = IEEE Transactions on Wireless Communications|volume = 2|number=4|pages = 840–845| doi=10.1109/TWC.2003.814350 | citeseerx= 10.1.1.190.6761}}

    \begin{align}

    \operatorname{erfc} x &\leq \frac{1}{2}e^{-2 x^2} + \frac{1}{2}e^{- x^2} \leq e^{-x^2}, &\quad x &> 0 \\[1.5ex]

    \operatorname{erfc} x &\approx \frac{1}{6}e^{-x^2} + \frac{1}{2}e^{-\frac{4}{3} x^2}, &\quad x &> 0 .

    \end{align}

  • The above have been generalized to sums of {{mvar|N}} exponentials{{cite journal |doi=10.1109/TCOMM.2020.3006902 |title=Global minimax approximations and bounds for the Gaussian Q-function by sums of exponentials|journal=IEEE Transactions on Communications |year=2020 |last1=Tanash |first1=I.M. |last2=Riihonen |first2=T. |volume=68 |issue=10 |pages=6514–6524 |arxiv=2007.06939 |s2cid=220514754}} with increasing accuracy in terms of {{mvar|N}} so that {{math|erfc x}} can be accurately approximated or bounded by {{math|2({{sqrt|2}}x)}}, where

    \tilde{Q}(x) = \sum_{n=1}^N a_n e^{-b_n x^2}.

    In particular, there is a systematic methodology to solve the numerical coefficients {{math|{(an,bn)}{{su|b=n {{=}} 1|p=N}}}} that yield a minimax approximation or bound for the closely related Q-function: {{math|Q(x) ≈ (x)}}, {{math|Q(x) ≤ (x)}}, or {{math|Q(x) ≥ (x)}} for {{math|x ≥ 0}}. The coefficients {{math|{(an,bn)}{{su|b=n {{=}} 1|p=N}}}} for many variations of the exponential approximations and bounds up to {{math|N {{=}} 25}} have been released to open access as a comprehensive dataset.{{cite journal | doi=10.5281/zenodo.4112978 | title=Coefficients for Global Minimax Approximations and Bounds for the Gaussian Q-Function by Sums of Exponentials [Data set] | url=https://zenodo.org/record/4112978 | website=Zenodo | year=2020 | last1=Tanash | first1=I.M. | last2=Riihonen | first2=T.}}

  • A tight approximation of the complementary error function for {{math|x ∈ [0,∞)}} is given by Karagiannidis & Lioumpas (2007){{cite journal|last1=Karagiannidis |first1=G. K. |last2=Lioumpas |first2=A. S. |url=http://users.auth.gr/users/9/3/028239/public_html/pdf/Q_Approxim.pdf |title=An improved approximation for the Gaussian Q-function |date=2007 |journal=IEEE Communications Letters |volume=11 |issue=8 |pages=644–646|doi=10.1109/LCOMM.2007.070470 |s2cid=4043576 }} who showed for the appropriate choice of parameters {{math|{A,B}}} that

    \operatorname{erfc} x \approx \frac{\left(1 - e^{-Ax}\right)e^{-x^2}}{B\sqrt{\pi} x}.

    They determined {{math|{A,B} {{=}} {1.98,1.135}}}, which gave a good approximation for all {{math|x ≥ 0}}. Alternative coefficients are also available for tailoring accuracy for a specific application or transforming the expression into a tight bound.{{cite journal |doi=10.1109/LCOMM.2021.3052257|title=Improved coefficients for the Karagiannidis–Lioumpas approximations and bounds to the Gaussian Q-function|journal=IEEE Communications Letters | year=2021 | last1=Tanash | first1=I.M.|last2=Riihonen|first2=T.|volume=25|issue=5|pages=1468–1471|arxiv=2101.07631|s2cid=231639206}}

  • A single-term lower bound is{{cite journal |last1=Chang |first1=Seok-Ho |last2=Cosman |first2=Pamela C. |author-link2 = Pamela Cosman |last3=Milstein |first3=Laurence B. |date=November 2011 |title=Chernoff-Type Bounds for the Gaussian Error Function |url=http://escholarship.org/uc/item/6hw4v7pg |journal=IEEE Transactions on Communications |volume=59 |issue=11 |pages=2939–2944 |doi=10.1109/TCOMM.2011.072011.100049 |s2cid=13636638}}

    \operatorname{erfc} x \geq \sqrt{\frac{2 e}{\pi}} \frac{\sqrt{\beta - 1}}{\beta} e^{- \beta x^2}, \qquad x \ge 0,\quad \beta > 1,

    where the parameter {{mvar|β}} can be picked to minimize error on the desired interval of approximation.

  • Another approximation is given by Sergei Winitzki using his "global Padé approximations":{{cite book |last=Winitzki |first=Sergei |title=Computational Science and Its Applications – ICCSA 2003 |date=2003 |volume=2667 |chapter=Uniform approximations for transcendental functions |publisher=Springer, Berlin |pages=[https://archive.org/details/computationalsci0000iccs_a2w6/page/780 780–789] |isbn=978-3-540-40155-1 |doi=10.1007/3-540-44839-X_82 |chapter-url-access=registration |chapter-url=https://archive.org/details/computationalsci0000iccs_a2w6 |series=Lecture Notes in Computer Science }}{{cite journal|last1=Zeng |first1=Caibin |last2=Chen |first2=Yang Cuan |title=Global Padé approximations of the generalized Mittag-Leffler function and its inverse |journal=Fractional Calculus and Applied Analysis |date=2015 |volume=18 |issue=6 | pages=1492–1506 |doi= 10.1515/fca-2015-0086 |quote=Indeed, Winitzki [32] provided the so-called global Padé approximation | arxiv=1310.5592 |s2cid=118148950 }}{{rp|2–3}}

    \operatorname{erf} x \approx \sgn x \cdot \sqrt{1 - \exp\left(-x^2\frac{\frac{4}{\pi} + ax^2}{1 + ax^2}\right)}

    where

    a = \frac{8(\pi - 3)}{3\pi(4 - \pi)} \approx 0.140012.

    This is designed to be very accurate in a neighborhood of 0 and a neighborhood of infinity, and the relative error is less than 0.00035 for all real {{mvar|x}}. Using the alternate value {{math|a ≈ 0.147}} reduces the maximum relative error to about 0.00013.{{Cite web |url=https://www.academia.edu/9730974/A_handy_approximation_for_the_error_function_and_its_inverse |last=Winitzki |first=Sergei |date=6 February 2008 |title=A handy approximation for the error function and its inverse }}

    {{pb}}

    This approximation can be inverted to obtain an approximation for the inverse error function:

    \operatorname{erf}^{-1}x \approx \sgn x \cdot \sqrt{\sqrt{\left(\frac{2}{\pi a} + \frac{\ln\left(1 - x^2\right)}{2}\right)^2 - \frac{\ln\left(1 - x^2\right)}{a}} -\left(\frac{2}{\pi a} + \frac{\ln\left(1 - x^2\right)}{2}\right)}.

  • An approximation with a maximal error of {{val|1.2e-7}} for any real argument is:{{cite book | last = Press | first = William H. | title = Numerical Recipes in Fortran 77: The Art of Scientific Computing | isbn = 0-521-43064-X | year = 1992 | page = 214 | publisher = Cambridge University Press }}

    \operatorname{erf} x = \begin{cases}

    1-\tau & x\ge 0\\

    \tau-1 & x < 0

    \end{cases}

    with

    \begin{align}

    \tau &= t\cdot\exp\left(-x^2-1.26551223+1.00002368 t+0.37409196 t^2+0.09678418 t^3 -0.18628806 t^4\right.\\

    &\left. \qquad\qquad\qquad +0.27886807 t^5-1.13520398 t^6+1.48851587 t^7 -0.82215223 t^8+0.17087277 t^9\right)

    \end{align}

    and

    t = \frac{1}{1 + \frac{1}{2}|x|}.

  • An approximation of \operatorname{erfc} with a maximum relative error less than 2^{-53} \left(\approx 1.1 \times 10^{-16}\right) in absolute value is:{{Cite journal | last = Dia | first = Yaya D. |date = 2023 | title = Approximate Incomplete Integrals, Application to Complementary Error Function | url = https://www.ssrn.com/abstract=4487559 | journal = SSRN Electronic Journal | language = en | doi = 10.2139/ssrn.4487559 | issn = 1556-5068}}

    for {{nowrap|x\ge 0,}}

    \begin{aligned}

    \operatorname{erfc} \left(x\right)

    & =

    \left(\frac{0.56418958354775629}{x+2.06955023132914151}\right) \left(\frac{x^2+2.71078540045147805 x+5.80755613130301624}{x^2+3.47954057099518960 x+12.06166887286239555}\right) \\ & \left(\frac{x^2+3.47469513777439592 x+12.07402036406381411}{x^2+3.72068443960225092 x+8.44319781003968454}\right)

    \left(\frac{x^2+4.00561509202259545 x+9.30596659485887898}{x^2+3.90225704029924078 x+6.36161630953880464}\right) \\

    & \left(\frac{x^2+5.16722705817812584 x+9.12661617673673262}{x^2+4.03296893109262491 x+5.13578530585681539}\right)

    \left(\frac{x^2+5.95908795446633271 x+9.19435612886969243}{x^2+4.11240942957450885 x+4.48640329523408675}\right) e^{-x^2} \\

    \end{aligned}

    and for x<0

    \operatorname{erfc} \left(x\right) = 2 - \operatorname{erfc} \left(-x\right)

  • A simple approximation for real-valued arguments could be done through Hyperbolic functions:

    \operatorname{erf} \left(x\right) \approx z(x) = \tanh\left(\frac{2}{\sqrt{\pi}}\left(x+\frac{11}{123}x^3\right)\right)

    which keeps the absolute difference {{nowrap|\left|\operatorname{erf} \left(x\right)-z(x)\right| < 0.000358,\, \forall x.}}

  • Since the error function and the Gaussian Q-function are closely related through the identity \operatorname{erfc}(x) = 2 Q(\sqrt{2} x) or equivalently Q(x) = \frac{1}{2} \operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right), bounds developed for the Q-function can be adapted to approximate the complementary error function. A pair of tight lower and upper bounds on the Gaussian Q-function for positive arguments x \in [0, \infty) was introduced by Abreu (2012){{cite journal |doi=10.1109/TCOMM.2012.080612.110075 |title=Very Simple Tight Bounds on the Q-Function |journal=IEEE Transactions on Communications |volume=60 |issue=9 |pages=2415–2420 |year=2012 |last=Abreu |first=Giuseppe}} based on a simple algebraic expression with only two exponential terms:

    Q(x) \geq \frac{1}{12} e^{-x^2} + \frac{1}{\sqrt{2\pi} (x + 1)} e^{-x^2 / 2}, \qquad x \geq 0,

    and

    Q(x) \leq \frac{1}{50} e^{-x^2} + \frac{1}{2 (x + 1)} e^{-x^2 / 2}, \qquad x \geq 0.

    These bounds stem from a unified form Q_{\mathrm{B}}(x; a, b) = \frac{\exp(-x^2)}{a} + \frac{\exp(-x^2 / 2)}{b (x + 1)}, where the parameters a and b are selected to ensure the bounding properties: for the lower bound, a_{\mathrm{L}} = 12 and b_{\mathrm{L}} = \sqrt{2\pi}, and for the upper bound, a_{\mathrm{U}} = 50 and b_{\mathrm{U}} = 2.

    These expressions maintain simplicity and tightness, providing a practical trade-off between accuracy and ease of computation. They are particularly valuable in theoretical contexts, such as communication theory over fading channels, where both functions frequently appear. Additionally, the original Q-function bounds can be extended to Q^n(x) for positive integers n via the binomial theorem, suggesting potential adaptability for powers of \operatorname{erfc}(x), though this is less commonly required in error function applications.

=Table of values=

{{further|Interval estimation|Coverage probability|68–95–99.7 rule}}

class="wikitable" style="text-align:left;margin-left:24pt"

! {{math|x}}!! {{math|erf x}} !! {{math|1 − erf x}}

0{{val|0}}{{val|1}}
0.02{{val|0.022564575}}{{val|0.977435425}}
0.04{{val|0.045111106}}{{val|0.954888894}}
0.06{{val|0.067621594}}{{val|0.932378406}}
0.08{{val|0.090078126}}{{val|0.909921874}}
0.1{{val|0.112462916}}{{val|0.887537084}}
0.2{{val|0.222702589}}{{val|0.777297411}}
0.3{{val|0.328626759}}{{val|0.671373241}}
0.4{{val|0.428392355}}{{val|0.571607645}}
0.5{{val|0.520499878}}{{val|0.479500122}}
0.6{{val|0.603856091}}{{val|0.396143909}}
0.7{{val|0.677801194}}{{val|0.322198806}}
0.8{{val|0.742100965}}{{val|0.257899035}}
0.9{{val|0.796908212}}{{val|0.203091788}}
1{{val|0.842700793}}{{val|0.157299207}}
1.1{{val|0.880205070}}{{val|0.119794930}}
1.2{{val|0.910313978}}{{val|0.089686022}}
1.3{{val|0.934007945}}{{val|0.065992055}}
1.4{{val|0.952285120}}{{val|0.047714880}}
1.5{{val|0.966105146}}{{val|0.033894854}}
1.6{{val|0.976348383}}{{val|0.023651617}}
1.7{{val|0.983790459}}{{val|0.016209541}}
1.8{{val|0.989090502}}{{val|0.010909498}}
1.9{{val|0.992790429}}{{val|0.007209571}}
2{{val|0.995322265}}{{val|0.004677735}}
2.1{{val|0.997020533}}{{val|0.002979467}}
2.2{{val|0.998137154}}{{val|0.001862846}}
2.3{{val|0.998856823}}{{val|0.001143177}}
2.4{{val|0.999311486}}{{val|0.000688514}}
2.5{{val|0.999593048}}{{val|0.000406952}}
3{{val|0.999977910}}{{val|0.000022090}}
3.5{{val|0.999999257}}{{val|0.000000743}}

Related functions

=Complementary error function=

The complementary error function, denoted {{math|erfc}}, is defined as

File:Plot of the complementary error function Erfc(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg

\begin{align}

\operatorname{erfc} x

& = 1-\operatorname{erf} x \\[5pt]

& = \frac{2}{\sqrt\pi} \int_x^\infty e^{-t^2}\,\mathrm dt \\[5pt]

& = e^{-x^2} \operatorname{erfcx} x,

\end{align}

which also defines {{math|erfcx}}, the scaled complementary error function{{Citation |first=W. J. |last=Cody |title=Algorithm 715: SPECFUN—A portable FORTRAN package of special function routines and test drivers |url=http://www.stat.wisc.edu/courses/st771-newton/papers/p22-cody.pdf |journal=ACM Trans. Math. Softw. |volume=19 |issue=1 |pages=22–32 |date=March 1993 |doi=10.1145/151271.151273|citeseerx=10.1.1.643.4394 |s2cid=5621105 }} (which can be used instead of {{math|erfc}} to avoid arithmetic underflow{{Citation |first=M. R. |last=Zaghloul |title=On the calculation of the Voigt line profile: a single proper integral with a damped sine integrand | journal = Monthly Notices of the Royal Astronomical Society |volume=375 |issue=3 |pages=1043–1048 |date=1 March 2007 |doi=10.1111/j.1365-2966.2006.11377.x|bibcode=2007MNRAS.375.1043Z |doi-access=free }}). Another form of {{math|erfc x}} for {{math|x ≥ 0}} is known as Craig's formula, after its discoverer:John W. Craig, [http://wsl.stanford.edu/~ee359/craig.pdf A new, simple and exact result for calculating the probability of error for two-dimensional signal constellations] {{Webarchive|url=https://web.archive.org/web/20120403231129/http://wsl.stanford.edu/~ee359/craig.pdf |date=3 April 2012 }}, Proceedings of the 1991 IEEE Military Communication Conference, vol. 2, pp. 571–575.

\operatorname{erfc} (x \mid x\ge 0)

= \frac{2}{\pi} \int_0^\frac{\pi}{2} \exp \left( - \frac{x^2}{\sin^2 \theta} \right) \, \mathrm d\theta.

This expression is valid only for positive values of {{mvar|x}}, but it can be used in conjunction with {{math|erfc x {{=}} 2 − erfc(−x)}} to obtain {{math|erfc(x)}} for negative values. This form is advantageous in that the range of integration is fixed and finite. An extension of this expression for the {{math|erfc}} of the sum of two non-negative variables is as follows:{{cite journal |doi=10.1109/TCOMM.2020.2986209 |title=A Novel Extension to Craig's Q-Function Formula and Its Application in Dual-Branch EGC Performance Analysis|journal=IEEE Transactions on Communications |volume=68 |issue=7 |pages=4117–4125 |year=2020 |last1=Behnad |first1=Aydin |s2cid=216500014}}

\operatorname{erfc} (x+y \mid x,y\ge 0) = \frac{2}{\pi} \int_0^\frac{\pi}{2} \exp \left( - \frac{x^2}{\sin^2 \theta} - \frac{y^2}{\cos^2 \theta} \right) \,\mathrm d\theta.

=Imaginary error function=

The imaginary error function, denoted {{math|erfi}}, is defined as

File:Plot of the imaginary error function Erfi(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg

\begin{align}

\operatorname{erfi} x

& = -i\operatorname{erf} ix \\[5pt]

& = \frac{2}{\sqrt\pi} \int_0^x e^{t^2}\,\mathrm dt \\[5pt]

& = \frac{2}{\sqrt\pi} e^{x^2} D(x),

\end{align}

where {{math|D(x)}} is the Dawson function (which can be used instead of {{math|erfi}} to avoid arithmetic overflow).

Despite the name "imaginary error function", {{math|erfi x}} is real when {{mvar|x}} is real.

When the error function is evaluated for arbitrary complex arguments {{mvar|z}}, the resulting complex error function is usually discussed in scaled form as the Faddeeva function:

w(z) = e^{-z^2}\operatorname{erfc}(-iz) = \operatorname{erfcx}(-iz).

=Cumulative distribution function=

The error function is essentially identical to the standard normal cumulative distribution function, denoted {{math|Φ}}, also named {{math|norm(x)}} by some software languages{{Citation needed|date=July 2020}}, as they differ only by scaling and translation. Indeed,

File:Normal cumulative distribution function complex plot in Mathematica 13.1 with ComplexPlot3D.svg

\begin{align}

\Phi(x)

&= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^\tfrac{-t^2}{2}\,\mathrm dt\\[6pt]

&= \frac{1}{2} \left(1+\operatorname{erf}\frac{x}{\sqrt 2}\right)\\[6pt]

&= \frac{1}{2} \operatorname{erfc}\left(-\frac{x}{\sqrt 2}\right)

\end{align}

or rearranged for {{math|erf}} and {{math|erfc}}:

\begin{align}

\operatorname{erf}(x) &= 2 \Phi{\left ( x \sqrt{2} \right )} - 1 \\[6pt]

\operatorname{erfc}(x) &= 2 \Phi{\left ( - x \sqrt{2} \right )} \\

&= 2\left(1 - \Phi{\left ( x \sqrt{2} \right)}\right).

\end{align}

Consequently, the error function is also closely related to the Q-function, which is the tail probability of the standard normal distribution. The Q-function can be expressed in terms of the error function as

\begin{align}

Q(x) &= \frac{1}{2} - \frac{1}{2} \operatorname{erf} \frac{x}{\sqrt 2}\\

&= \frac{1}{2}\operatorname{erfc}\frac{x}{\sqrt 2}.

\end{align}

The inverse of {{math|Φ}} is known as the normal quantile function, or probit function and may be expressed in terms of the inverse error function as

\operatorname{probit}(p) = \Phi^{-1}(p) = \sqrt{2}\operatorname{erf}^{-1}(2p-1) = -\sqrt{2}\operatorname{erfc}^{-1}(2p).

The standard normal cdf is used more often in probability and statistics, and the error function is used more often in other branches of mathematics.

The error function is a special case of the Mittag-Leffler function, and can also be expressed as a confluent hypergeometric function (Kummer's function):

\operatorname{erf} x = \frac{2x}{\sqrt\pi} M\left(\tfrac{1}{2},\tfrac{3}{2},-x^2\right).

It has a simple expression in terms of the Fresnel integral.{{Elucidate|date=May 2012}}

In terms of the regularized gamma function {{mvar|P}} and the incomplete gamma function,

\operatorname{erf} x

= \sgn x \cdot P\left(\tfrac{1}{2}, x^2\right)

= \frac{\sgn x}{\sqrt\pi} \gamma{\left(\tfrac{1}{2}, x^2\right)}.{{math|sgn x}} is the sign function.

=Iterated integrals of the complementary error function=

The iterated integrals of the complementary error function are defined by{{cite book | last1 = Carslaw | first1 = H. S. |author1-link = Horatio Scott Carslaw | last2 = Jaeger | first2 = J. C.| author2-link = John Conrad Jaeger | year = 1959 | title = Conduction of Heat in Solids | edition = 2nd | publisher = Oxford University Press | isbn = 978-0-19-853368-9 | page = 484}}

\begin{align}

i^n\!\operatorname{erfc} z &= \int_z^\infty i^{n-1}\!\operatorname{erfc} \zeta\,\mathrm d\zeta \\[6pt]

i^0\!\operatorname{erfc} z &= \operatorname{erfc} z \\

i^1\!\operatorname{erfc} z &= \operatorname{ierfc} z = \frac{1}{\sqrt\pi} e^{-z^2} - z \operatorname{erfc} z \\

i^2\!\operatorname{erfc} z &= \tfrac{1}{4} \left( \operatorname{erfc} z -2 z \operatorname{ierfc} z \right) \\

\end{align}

The general recurrence formula is

2 n \cdot i^n\!\operatorname{erfc} z = i^{n-2}\!\operatorname{erfc} z -2 z \cdot i^{n-1}\!\operatorname{erfc} z

They have the power series

i^n\!\operatorname{erfc} z =\sum_{j=0}^\infty \frac{(-z)^j}{2^{n-j}j! \,\Gamma \left( 1 + \frac{n-j}{2}\right)},

from which follow the symmetry properties

i^{2m}\!\operatorname{erfc} (-z) =-i^{2m}\!\operatorname{erfc} z +\sum_{q=0}^m \frac{z^{2q}}{2^{2(m-q)-1}(2q)! (m-q)!}

and

i^{2m+1}\!\operatorname{erfc}(-z) =i^{2m+1}\!\operatorname{erfc} z +\sum_{q=0}^m \frac{z^{2q+1}}{2^{2(m-q)-1}(2q+1)! (m-q)!}.

Implementations

=As real function of a real argument=

  • In POSIX-compliant operating systems, the header math.h shall declare and the mathematical library libm shall provide the functions erf and erfc (double precision) as well as their single precision and extended precision counterparts erff, erfl and erfcf, erfcl.{{cite web | url = https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/math.h.html | access-date = 21 April 2023 | website = opengroup.org | title = math.h - mathematical declarations | year = 2018 | issue = 7}}
  • The GNU Scientific Library provides erf, erfc, log(erf), and scaled error functions.{{Cite web|url=https://www.gnu.org/software/gsl/doc/html/specfunc.html#error-functions|title = Special Functions – GSL 2.7 documentation}}

=As complex function of a complex argument=

  • [https://jugit.fz-juelich.de/mlz/libcerf libcerf], numeric C library for complex error functions, provides the complex functions cerf, cerfc, cerfcx and the real functions erfi, erfcx with approximately 13–14 digits precision, based on the Faddeeva function as implemented in the [http://ab-initio.mit.edu/Faddeeva MIT Faddeeva Package]

References

{{Reflist}}

Further reading

  • {{AS ref |7|297}}
  • {{Citation |last1=Press |first1=William H. |last2=Teukolsky |first2=Saul A. |last3=Vetterling |first3=William T. |last4=Flannery |first4=Brian P. |year=2007 |title=Numerical Recipes: The Art of Scientific Computing |edition=3rd |publisher=Cambridge University Press |location=New York |isbn=978-0-521-88068-8 |chapter=Section 6.2. Incomplete Gamma Function and Error Function |chapter-url=http://apps.nrbook.com/empanel/index.html#pg=259 |access-date=9 August 2011 |archive-date=11 August 2011 |archive-url=https://web.archive.org/web/20110811154417/http://apps.nrbook.com/empanel/index.html#pg=259 |url-status=dead }}
  • {{dlmf|id=7|title=Error Functions, Dawson’s and Fresnel Integrals|first=Nico M. |last=Temme }}