essential subgroup

In mathematics, especially in the area of algebra studying the theory of abelian groups, an essential subgroup is a subgroup that determines much of the structure of its containing group. The concept was generalized to essential submodules.

Definition

A subgroup S of a (typically abelian) group G is said to be essential if whenever H is a non-trivial subgroup of G, the intersection of S and H is non-trivial: here "non-trivial" means "containing an element other than the identity".

References

  • {{cite book | author=Phillip A. Griffith | title=Infinite Abelian group theory | series=Chicago Lectures in Mathematics | publisher=University of Chicago Press | year=1970 | isbn=0-226-30870-7 | page=19}}

Category:Subgroup properties

Category:Abelian group theory

{{group-theory-stub}}