excess-3
{{short description|Variation to BCD-code where three (11) is added to a binary representation}}
{{Redir|XS-3|the experimental aircraft|Douglas XS-3 Stiletto}}
{{Redir|Shifted binary|the general concept|Offset binary|binary shifts|Bit shifting}}
{{Use dmy dates|date=May 2019|cs1-dates=y}}
{{Infobox code
| name = Stibitz code
| digit_values = 8 4 {{overline|−2}} {{overline|−1}}
| maximum_distance = 4
| redundancy = 0.7
}}
Excess-3, 3-excess or 10-excess-3 binary code (often abbreviated as XS-3, 3XS or X3), shifted binary or Stibitz code (after George Stibitz, who built a relay-based adding machine in 1937) is a self-complementary binary-coded decimal (BCD) code and numeral system. It is a biased representation. Excess-3 code was used on some older computers as well as in cash registers and hand-held portable electronic calculators of the 1970s, among other uses.
Representation
Biased codes are a way to represent values with a balanced number of positive and negative numbers using a pre-specified number N as a biasing value. Biased codes (and Gray codes) are non-weighted codes. In excess-3 code, numbers are represented as decimal digits, and each digit is represented by four bits as the digit value plus 3 (the "excess" amount):
- The smallest binary number represents the smallest value ({{nobr|0 − excess}}).
- The greatest binary number represents the largest value ({{nobr|2N+1 − excess − 1}}).
class="wikitable"
|+ Excess-3, and Stibitz code |
Decimal
! Excess-3 ! Stibitz ! Binary ! 3-of-6 CCITT ! 4-of-8 Hamming |
---|
align="center"
| 0 | style="background:#0FF" | 0011 | 0011 | 0000 | 0000 | …10 | …0011 |
align="center"
| 1 | style="background:#0F0" | 0100 | 0100 | 0001 | 0001 | …11 | …1011 |
align="center"
| 2 | style="background:#FF0" | 0101 | 0101 | 0010 | 0010 | …10 | …0101 |
align="center"
| 3 | style="background:#FF8000" | 0110 | 0110 | 0011 | 0011 | …10 | …0110 |
align="center"
| 4 | style="background:#F00;" | 0111 | 0111 | 0100 | 0100 | …00 | …1000 |
align="center"
| 5 | style="background:#F00;" | 1000 | 1000 | 0101 | 0101 | …11 | …0111 |
align="center"
| 6 | style="background:#FF8000" | 1001 | 1001 | 0110 | 0110 | …10 | …1001 |
align="center"
| 7 | style="background:#FF0" | 1010 | 1010 | 0111 | 0111 | …10 | …1010 |
align="center"
| 8 | style="background:#0F0" | 1011 | 1011 | 1000 | 1000 | …00 | …0100 |
align="center"
| 9 | style="background:#0FF" | 1100 | 1100 | 1001 | 1001 | …10 | …1100 |
To encode a number such as 127, one simply encodes each of the decimal digits as above, giving (0100, 0101, 1010).
Excess-3 arithmetic uses different algorithms than normal non-biased BCD or binary positional system numbers. After adding two excess-3 digits, the raw sum is excess-6. For instance, after adding 1 (0100 in excess-3) and 2 (0101 in excess-3), the sum looks like 6 (1001 in excess-3) instead of 3 (0110 in excess-3). To correct this problem, after adding two digits, it is necessary to remove the extra bias by subtracting binary 0011 (decimal 3 in unbiased binary) if the resulting digit is less than decimal 10, or subtracting binary 1101 (decimal 13 in unbiased binary) if an overflow (carry) has occurred. (In 4-bit binary, subtracting binary 1101 is equivalent to adding 0011 and vice versa.){{cite book |title=Computer Architecture and Organization |last=Hayes |first=John P. |isbn=0-07-027363-4 |date=1978 |publisher=McGraw-Hill International Book Company |page=156}}
Advantage
The primary advantage of excess-3 coding over non-biased coding is that a decimal number can be nines' complemented (for subtraction) as easily as a binary number can be ones' complemented: just by inverting all bits. Also, when the sum of two excess-3 digits is greater than 9, the carry bit of a 4-bit adder will be set high. This works because, after adding two digits, an "excess" value of 6 results in the sum. Because a 4-bit integer can only hold values 0 to 15, an excess of 6 means that any sum over 9 will overflow (produce a carry-out).
Another advantage is that the codes 0000 and 1111 are not used for any digit. A fault in a memory or basic transmission line may result in these codes. It is also more difficult to write the zero pattern to magnetic media.
Example
BCD 8-4-2-1 to excess-3 converter example in VHDL:
entity bcd8421xs3 is
port (
a : in std_logic;
b : in std_logic;
c : in std_logic;
d : in std_logic;
an : buffer std_logic;
bn : buffer std_logic;
cn : buffer std_logic;
dn : buffer std_logic;
w : out std_logic;
x : out std_logic;
y : out std_logic;
z : out std_logic
);
end entity bcd8421xs3;
architecture dataflow of bcd8421xs3 is
begin
an <= not a;
bn <= not b;
cn <= not c;
dn <= not d;
w <= (an and b and d ) or (a and bn and cn)
or (an and b and c and dn);
x <= (an and bn and d ) or (an and bn and c and dn)
or (an and b and cn and dn) or (a and bn and cn and d);
y <= (an and cn and dn) or (an and c and d )
or (a and bn and cn and dn);
z <= (an and dn) or (a and bn and cn and dn);
end architecture dataflow; -- of bcd8421xs3
Extensions
{{Infobox code
|name=3-of-6 extension
|maximum_distance=6
}}
{{Infobox code
|name=4-of-8 extension
|maximum_distance=8
}}
- 3-of-6 code extension: The excess-3 code is sometimes also used for data transfer, then often expanded to a 6-bit code per CCITT GT 43 No. 1, where 3 out of 6 bits are set.
- 4-of-8 code extension: As an alternative to the IBM transceiver code (which is a 4-of-8 code with a Hamming distance of 2), it is also possible to define a 4-of-8 excess-3 code extension achieving a Hamming distance of 4, if only denary digits are to be transferred.
See also
- Offset binary, excess-N, biased representation
- Excess-128
- Excess-Gray code
- Shifted Gray code
- Gray code
- m-of-n code
- Aiken code
References
{{Reflist|refs=
{{cite book |title=Taschenbuch der Nachrichtenverarbeitung |language=de |editor-first=Karl W. |editor-last=Steinbuch |editor-link=Karl W. Steinbuch |date=1962 |edition=1 |publisher=Springer-Verlag OHG |location=Karlsruhe, Germany |publication-place=Berlin / Göttingen / New York |lccn=62-14511 |pages=71–73, 1081–1082}}
{{cite book |title=Taschenbuch der Informatik – Band II – Struktur und Programmierung von EDV-Systemen |language=de |editor-first1=Karl W. |editor-last1=Steinbuch |editor-link1=Karl W. Steinbuch |editor-first2=Wolfgang |editor-last2=Weber |editor-first3=Traute |editor-last3=Heinemann |date=1974 |orig-year=1967 |edition=3 |volume=2 |work=Taschenbuch der Nachrichtenverarbeitung |publisher=Springer Verlag |location=Berlin, Germany |isbn=3-540-06241-6 |lccn=73-80607 |pages=98–100}}
{{cite book |title=Decimal Computation |author-first=Hermann |author-last=Schmid |author-link=Hermann Schmid (computer scientist) |date=1974 |edition=1 |publisher=John Wiley & Sons, Inc. |location=Binghamton, New York, USA |isbn=0-471-76180-X |page=[https://archive.org/details/decimalcomputati0000schm/page/11 11] |url=https://archive.org/details/decimalcomputati0000schm |url-access=registration |access-date=2016-01-03}}
{{cite book |title=Decimal Computation |author-first=Hermann |author-last=Schmid |author-link=Hermann Schmid (computer scientist) |orig-year=1974 |date=1983 |edition=1 (reprint) |publisher=Robert E. Krieger Publishing Company |location=Malabar, Florida, USA |isbn=0-89874-318-4 |page=11 |url=https://books.google.com/books?id=uEYZAQAAIAAJ |access-date=2016-01-03}} (NB. At least some batches of this reprint edition were misprints with defective pages 115–146.)
{{cite book |author-first=Richard Kohler |author-last=Richards |title=Arithmetic Operations in Digital Computers |publisher=van Nostrand |location=New York, USA |date=1955 |page=182}}
{{cite book |author=Comité Consultatif International Téléphonique et Télégraphique (CCITT), Groupe de Travail 43 |title=Contribution No. 1 |date=1959-06-03 |id=CCITT, GT 43 No. 1}}
{{cite journal |author-first1=Charles J. |author-last1=Bashe |author-first2=Peter Ward |author-last2=Jackson |author-first3=Howard A. |author-last3=Mussell |author-first4=Wayne David |author-last4=Winger |title=The Design of the IBM Type 702 System |journal=Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics |volume=74 |issue=6 |date=January 1956 |pages=695–704 |doi=10.1109/TCE.1956.6372444 |s2cid=51666209 |id=Paper No. 55-719}}
{{cite book |author-last=Ritchie |author-first=David |date=1986 |title=The Computer Pioneers |page=[https://archive.org/details/computerpioneers00ritc/page/35 35] |location=New York, USA |publisher=Simon and Schuster |isbn=067152397X |url=https://archive.org/details/computerpioneers00ritc/page/35 }}
{{cite book |title=Digital Electronics |author-first1=Folkert |author-last1=Dokter |author-first2=Jürgen |author-last2=Steinhauer |date=1973-06-18 |series=Philips Technical Library (PTL) / Macmillan Education |publisher=The Macmillan Press Ltd. / N. V. Philips' Gloeilampenfabrieken |edition=Reprint of 1st English |location=Eindhoven, Netherlands |sbn=333-13360-9 |isbn=978-1-349-01419-4 |doi=10.1007/978-1-349-01417-0 |pages=42, 44 |url=https://books.google.com/books?id=hlRdDwAAQBAJ |access-date=2018-07-01 }}{{Dead link|date=March 2024 |bot=InternetArchiveBot |fix-attempted=yes }} (270 pages) (NB. This is based on a translation of volume I of the two-volume German edition.)
{{cite book |author-first1=Folkert |author-last1=Dokter |author-first2=Jürgen |author-last2=Steinhauer |title=Digitale Elektronik in der Meßtechnik und Datenverarbeitung: Theoretische Grundlagen und Schaltungstechnik |language=de |series=Philips Fachbücher |publisher=Deutsche Philips GmbH |location=Hamburg, Germany |volume=I |date=1975 |orig-year=1969 |edition=improved and extended 5th |isbn=3-87145-272-6 |pages=48, 51, 53, 58, 61, 73}} (xii+327+3 pages) (NB. The German edition of volume I was published in 1969, 1971, two editions in 1972, and 1975. Volume II was published in 1970, 1972, 1973, and 1975.)
{{cite journal |author-first=William H. |author-last=Kautz |author-link=William H. Kautz |title=Optimized Data Encoding for Digital Computers |date=June 1954 |journal=Convention Record of the I.R.E. 1954 National Convention, Part 4: Electronic Computers and Information Technology |publisher=The Institute of Radio Engineers, Inc. |id=Session 19: Information Theory III - Speed and Computation |volume=2 |location=Stanford Research Institute, Stanford, California, USA |pages=47–57 |url=https://www.americanradiohistory.com/Archive-IRE/50s/IRE-1954-Part-4-Electronic-Computers-&-Information%20pdf |access-date=2020-05-22 }} (11 pages)
{{cite book |title=Mathematics and Computers |author-first1=George Robert |author-last1=Stibitz |author-link1=George Robert Stibitz |author-first2=Jules A. |author-last2=Larrivee |date=1957 |edition=1 |publisher=McGraw-Hill Book Company, Inc. |publication-place=New York, USA / Toronto, Canada / London, UK |location=Underhill, Vermont, USA |lccn=56-10331 |page=105}} (10+228 pages)
}}