exponentially equivalent measures

{{Short description|Equivalence relation on mathematical measures}}

In mathematics, exponential equivalence of measures is how two sequences or families of probability measures are "the same" from the point of view of large deviations theory.

Definition

Let (M,d) be a metric space and consider two one-parameter families of probability measures on M, say (\mu_\varepsilon)_{\varepsilon >0} and (\nu_\varepsilon)_{\varepsilon >0}. These two families are said to be exponentially equivalent if there exist

  • a one-parameter family of probability spaces (\Omega,\Sigma_\varepsilon,P_\varepsilon)_{\varepsilon >0},
  • two families of M-valued random variables (Y_\varepsilon)_{\varepsilon >0} and (Z_\varepsilon)_{\varepsilon >0},

such that

  • for each \varepsilon >0, the P_\varepsilon-law (i.e. the push-forward measure) of Y_\varepsilon is \mu_\varepsilon, and the P_\varepsilon-law of Z_\varepsilon is \nu_\varepsilon,
  • for each \delta >0, "Y_\varepsilon and Z_\varepsilon are further than \delta apart" is a \Sigma_\varepsilon-measurable event, i.e.

::\big\{ \omega \in \Omega \big| d(Y_{\varepsilon}(\omega), Z_{\varepsilon}(\omega)) > \delta \big\} \in \Sigma_{\varepsilon},

  • for each \delta >0,

::\limsup_{\varepsilon \downarrow 0}\, \varepsilon \log P_\varepsilon \big( d(Y_\varepsilon, Z_\varepsilon) > \delta \big) = - \infty.

The two families of random variables (Y_\varepsilon)_{\varepsilon >0} and (Z_\varepsilon)_{\varepsilon >0} are also said to be exponentially equivalent.

Properties

The main use of exponential equivalence is that as far as large deviations principles are concerned, exponentially equivalent families of measures are indistinguishable. More precisely, if a large deviations principle holds for (\mu_\varepsilon)_{\varepsilon >0} with good rate function I, and (\mu_\varepsilon)_{\varepsilon >0} and (\nu_\varepsilon)_{\varepsilon >0} are exponentially equivalent, then the same large deviations principle holds for (\nu_\varepsilon)_{\varepsilon >0} with the same good rate function I.

References

  • {{cite book

| last= Dembo

| first = Amir

|author2=Zeitouni, Ofer

| title = Large deviations techniques and applications

| series = Applications of Mathematics (New York) 38

| edition = Second

| publisher = Springer-Verlag

| location = New York

| year = 1998

| pages = xvi+396

| isbn = 0-387-98406-2

| mr = 1619036

}} (See section 4.2.2)

Category:Asymptotic analysis

Category:Probability theory

Category:Equivalence (mathematics)