factorion

{{Short description|Number that is the sum of the factorials of its digits}}

In number theory, a factorion in a given number base b is a natural number that equals the sum of the factorials of its digits.{{Citation|last=Sloane|first=Neil|website=On-Line Encyclopedia of Integer Sequences|title=A014080|url=https://oeis.org/A014080}}{{Citation|last=Gardner|first=Martin|chapter=Factorial Oddities|date=1978|publisher=Vintage Books|pages=61 and 64|title=Mathematical Magic Show: More Puzzles, Games, Diversions, Illusions and Other Mathematical Sleight-Of-Mind|url=https://books.google.com/books?id=RcnbvQEACAAJ&q=Mathematical+Magic+Show:+More+Puzzles,+Games,+Diversions,+Illusions+and+Other+Mathematical+Sleight-Of-Mind|isbn=9780394726236}}{{Citation|last=Madachy|first=Joseph S.|year=1979|publisher=Dover Publications|page=167|title=Madachy's Mathematical Recreations|url=https://books.google.com/books?id=UvpUAAAAYAAJ&q=Madachy%27s+Mathematical+Recreations|isbn=9780486237626}} The name factorion was coined by the author Clifford A. Pickover.{{Citation|last=Pickover|first=Clifford A.|publisher=John Wiley & Sons|year=1995|pages=169–171 and 319–320|title=Keys to Infinity|chapter=The Loneliness of the Factorions|via=Google Books|url=https://books.google.com/books?id=oXIFAAAACAAJ&q=Keys+to+Infinity|isbn=9780471193340}}

Definition

Let n be a natural number. For a base b > 1, we define the sum of the factorials of the digits{{Citation|last=Gupta|first=Shyam S.|title=Sum of the Factorials of the Digits of Integers|journal=The Mathematical Gazette|publisher=The Mathematical Association|volume=88|issue=512|year=2004|pages=258–261 |jstor=3620841|doi=10.1017/S0025557200174996|s2cid=125854033|doi-access=free}}{{Citation|last=Sloane|first=Neil|website=On-Line Encyclopedia of Integer Sequences|title=A061602|url=https://oeis.org/A061602}} of n, \operatorname{SFD}_b : \mathbb{N} \rightarrow \mathbb{N}, to be the following:

:\operatorname{SFD}_b(n) = \sum_{i=0}^{k - 1} d_i!.

where k = \lfloor \log_b n \rfloor + 1 is the number of digits in the number in base b, n! is the factorial of n and

:d_i = \frac{n \bmod{b^{i+1}} - n \bmod{b^{i}}}{b^{i}}

is the value of the ith digit of the number. A natural number n is a b-factorion if it is a fixed point for \operatorname{SFD}_b, i.e. if \operatorname{SFD}_b(n) = n.{{Citation|first=Steve|last=Abbott|title=SFD Chains and Factorion Cycles|journal=The Mathematical Gazette|publisher=The Mathematical Association|volume=88|issue=512|year=2004|pages=261–263 |jstor=3620842|doi=10.1017/S002555720017500X|s2cid=99976100}} 1 and 2 are fixed points for all bases b, and thus are trivial factorions for all b, and all other factorions are nontrivial factorions.

For example, the number 145 in base b = 10 is a factorion because 145 = 1! + 4! + 5!.

For b = 2, the sum of the factorials of the digits is simply the number of digits k in the base 2 representation since 0! = 1! = 1.

A natural number n is a sociable factorion if it is a periodic point for \operatorname{SFD}_b, where \operatorname{SFD}_b^k(n) = n for a positive integer k, and forms a cycle of period k. A factorion is a sociable factorion with k = 1, and a amicable factorion is a sociable factorion with k = 2.{{Citation|last=Sloane|first=Neil|website=On-Line Encyclopedia of Integer Sequences|title=A214285|url=https://oeis.org/A214285}}{{Citation|last=Sloane|first=Neil|website=On-Line Encyclopedia of Integer Sequences|title=A254499|url=https://oeis.org/A254499}}

All natural numbers n are preperiodic points for \operatorname{SFD}_b, regardless of the base. This is because all natural numbers of base b with k digits satisfy b^{k-1} \leq n \leq (b-1)!(k). However, when k \geq b, then b^{k-1} > (b-1)!(k) for b > 2, so any n will satisfy n > \operatorname{SFD}_b(n) until n < b^b. There are finitely many natural numbers less than b^b, so the number is guaranteed to reach a periodic point or a fixed point less than b^b, making it a preperiodic point. For b = 2, the number of digits k \leq n for any number, once again, making it a preperiodic point. This means also that there are a finite number of factorions and cycles for any given base b.

The number of iterations i needed for \operatorname{SFD}_b^i(n) to reach a fixed point is the \operatorname{SFD}_b function's persistence of n, and undefined if it never reaches a fixed point.

Factorions for {{Math|{{math|SFD<sub>''b''</sub>}}}}

=''b'' = (''k'' − 1)!=

Let k be a positive integer and the number base b = (k - 1)!. Then:

  • n_1 = kb + 1 is a factorion for \operatorname{SFD}_b for all k.

{{Math proof|title=Proof|drop=hidden|proof=

Let the digits of n_1 = d_1 b + d_0 be d_1 = k, and d_0 = 1. Then

: \operatorname{SFD}_b(n_1) = d_1! + d_0!

:: = k! + 1!

:: = k(k - 1)! + 1

:: = d_1 b + d_0

:: = n_1

Thus n_1 is a factorion for F_b for all k.

}}

  • n_2 = kb + 2 is a factorion for \operatorname{SFD}_b for all k.

{{Math proof|title=Proof|drop=hidden|proof=

Let the digits of n_2 = d_1 b + d_0 be d_1 = k, and d_0 = 2. Then

: \operatorname{SFD}_b(n_2) = d_1! + d_0!

:: = k! + 2!

:: = k(k - 1)! + 2

:: = d_1 b + d_0

:: = n_2

Thus n_2 is a factorion for F_b for all k.

}}

class="wikitable"

|+ Factorions

! k

! b

! n_1

! n_2

--

| 4

64142
--

| 5

245152
--

| 6

1206162
--

| 7

7207172

=''b'' = ''k''! − ''k'' + 1=

Let k be a positive integer and the number base b = k! - k + 1. Then:

  • n_1 = b + k is a factorion for \operatorname{SFD}_b for all k.

{{Math proof|title=Proof|drop=hidden|proof=

Let the digits of n_1 = d_1 b + d_0 be d_1 = 1, and d_0 = k. Then

: \operatorname{SFD}_b(n_1) = d_1! + d_0!

:: = 1! + k!

:: = k! + 1 - k + k

:: = 1(k! - k + 1) + k

:: = d_1 b + d_0

:: = n_1

Thus n_1 is a factorion for F_b for all k.

}}

class="wikitable"

|+ Factorions

! k

! b

! n_1

--

| 3

413
--

| 4

2114
--

| 5

11615
--

| 6

71516

= Table of factorions and cycles of {{Math|{{math|SFD<sub>''b''</sub>}}}} =

All numbers are represented in base b.

class="wikitable" border="1"
| Base b

! | Nontrivial factorion (n \neq 1, n \neq 2){{Citation|last=Sloane|first=Neil|website=On-Line Encyclopedia of Integer Sequences|title=A193163|url=https://oeis.org/A193163}}

! | Cycles

| 2\varnothing\varnothing
| 3\varnothing\varnothing
| 4133 → 12 → 3
| 5144\varnothing
| 641, 42\varnothing
| 7\varnothing36 → 2055 → 465 → 2343 → 53 → 240 → 36
| 8\varnothing3 → 6 → 1320 → 12

175 → 12051 → 175

| 962558
| 10145, 40585871 → 45361 → 871

872 → 45362 → 872

See also

References

{{reflist}}