final functor

In category theory, the notion of final functor (resp. initial functor) is a generalization of the notion of final object (resp. initial object) in a category.

A functor F: C \to D is called final if, for any set-valued functor G: D \to \textbf{Set}, the colimit of G is the same as the colimit of G \circ F. Note that an object d ∈ Ob(D) is a final object in the usual sense if and only if the functor \{*\} \xrightarrow{d} D is a final functor as defined here.

The notion of initial functor is defined as above, replacing final by initial and colimit by limit.

References

{{refbegin}}

  • {{citation|at=Definition 2.12, p. 24|title=Algebraic Theories: A Categorical Introduction to General Algebra|volume=184|series=Cambridge Tracts in Mathematics|first1=J.|last1=Adámek|first2=J.|last2=Rosický|authorlink2=Jiří Rosický (mathematician)|first3=E. M.|last3=Vitale|publisher=Cambridge University Press|year=2010|isbn=9781139491884|url=https://books.google.com/books?id=siNlAn8Bm30C&pg=PA24}}.
  • {{citation|page=37|title=Shape Theory: Categorical Methods of Approximation|series=Dover Books on Mathematics|first1=J. M.|last1=Cordier|first2=T.|last2=Porter|publisher=Courier Corporation|year=2013|isbn=9780486783475|url=https://books.google.com/books?id=6w3CAgAAQBAJ&pg=PA37}}.
  • {{citation|at=Definition 8.3.2, p. 127|title=Categorical Homotopy Theory|volume=24|series=New Mathematical Monographs|first=Emily|last=Riehl|publisher=Cambridge University Press|year=2014|url=https://books.google.com/books?id=6xpvAwAAQBAJ&pg=PA127}}.

{{refend}}