fission product yield

{{Short description|Fractions of products of nuclear fission}}

{{Long-lived fission products}}

{{Medium-lived fission products}}

Nuclear fission splits a heavy nucleus such as uranium or plutonium into two lighter nuclei, which are called fission products. Yield refers to the fraction of a fission product produced per fission.

Yield can be broken down by:

  1. Individual isotope
  2. Chemical element spanning several isotopes of different mass number but same atomic number.
  3. Nuclei of a given mass number regardless of atomic number. Known as "chain yield" because it represents a decay chain of beta decay.

Isotope and element yields will change as the fission products undergo beta decay, while chain yields do not change after completion of neutron emission by a few neutron-rich initial fission products (delayed neutrons), with half-life measured in seconds.

A few isotopes can be produced directly by fission, but not by beta decay because the would-be precursor with atomic number one less is stable and does not decay (atomic number grows by 1 during beta decay). Chain yields do not account for these "shadowed" isotopes; however, they have very low yields (less than a millionth as much as common fission products) because they are far less neutron-rich than the original heavy nuclei.

Yield is usually stated as percentage per fission, so that the total yield percentages sum to 200%.{{cn|date=June 2025}} Less often, it is stated as percentage of all fission product.{{cn|date=June 2025}}

Definitions

There are several types of yields. For the most common fission reactions, the decay of the fission products preserve mass number. Thus the products form decay chains of constant mass. That makes the independent yield especially useful.Mills, R. W. (1995). Fission product yield evaluation (Doctoral dissertation, University of Birmingham).{{rp|9}}

The independent yield is a product of three factors, Y(A) the sum yield or mass yield, f(A,Z) the fractional independent yield, and R(A,Z,I) the isomeric yield ratio:

\textrm{y}(A,Z,I) = \textrm{Y}(A)\cdot f(A,Z) \cdot R(A,Z,I)

Here possible product of fission can be represented by a triplet (A,Z,I), where A is the mass number, Z is the atomic number, and I is an integer for isomeric excited state, numbered from 0 for the ground state.

For each decay chain (mass number A) the fractional independent yields and isomeric yield formulas sum to one:

\Sigma_Z f(A,Z) = \Sigma_I R(A,Z,I) = 1

and the independent yields sum to the sum yield for each chain:

\textrm{Y}(A) = \Sigma_{Z,I} \textrm{y}(A,Z,I).

The independent yield excludes delayed neutron emission. The cumulative yield,, c(A,Z,I), of a nuclide (A,Z,I) is the total number of atoms produced by one fission over all time. The chain yield, Ch(A), is the sum of all the cumulative yields for one mass chain for one fission. The independent, cumulative, and chain yields are given as percent per fission, that is as the yield of products per 100 fission reaction.

Mass vs. yield curve

Image:ThermalFissionYield.svg]]

If a graph of the mass or mole yield of fission products against the atomic number of the fragments is drawn then it has two peaks, one in the area zirconium through to palladium and one at xenon through to neodymium. This is because the fission event causes the nucleus to split in an asymmetric manner,{{Cite web |url=http://www.science.uwaterloo.ca/~cchieh/cact/nuctek/fissionyield.html |title=fissionyield |access-date=2007-06-10 |archive-url=https://web.archive.org/web/20070528055359/http://www.science.uwaterloo.ca/~cchieh/cact/nuctek/fissionyield.html |archive-date=2007-05-28 |url-status=dead }} as nuclei closer to magic numbers are more stable.{{cite journal|title=Nuclear fission modes and fragment mass asymmetries in a five-dimensional deformation space|journal=Nature|date=15 February 2001|volume=409|issue=6822|pages=785–790|doi=10.1038/35057204|pmid=11236985 | last1 = Möller | first1 = P | last2 = Madland | first2 = DG | last3 = Sierk | first3 = AJ | last4 = Iwamoto | first4 = A|bibcode=2001Natur.409..785M|s2cid=9754793|url=https://zenodo.org/record/1233095}}

Yield vs. Z - This is a typical distribution for the fission of uranium. Note that in the calculations used to make this graph the activation of fission products was ignored and the fission was assumed to occur in a single moment rather than a length of time. In this bar chart results are shown for different cooling times (time after fission).

File:Fission yield volatile 2.png, which is important in nuclear reprocessing: Blue elements have volatile fluorides or are already volatile; green elements do not but have volatile chlorides; red elements have neither, but the elements themselves are volatile at very high temperatures. Yields at 100,1,2,3 years after fission, not considering later neutron capture, fraction of 100% not 200%. Beta decay Kr-85Rb, Sr-90Zr, Ru-106Pd, Sb-125Te, Cs-137Ba, Ce-144Nd, Sm-151Eu, Eu-155Gd visible.]]

Because of the stability of nuclei with even numbers of protons and/or neutrons the curve of yield against element is not a smooth curve. It tends to alternate.

In general, the higher the energy of the state that undergoes nuclear fission, the more likely a symmetric fission is, hence as the neutron energy increases and/or the energy of the fissile atom increases, the valley between the two peaks becomes more shallow; for instance, the curve of yield against mass for Pu-239 has a more shallow valley than that observed for U-235, when the neutrons are thermal neutrons. The curves for the fission of the later actinides tend to make even more shallow valleys. In extreme cases such as 259Fm, only one peak is seen.

Yield is usually expressed relative to number of fissioning nuclei, not the number of fission product nuclei, that is, yields should sum to 200%.

The table in the next section ("Ordered by yield") gives yields for notable radioactive (with half-lives greater than one year, plus iodine-131) fission products, and (the few most absorptive) neutron poison fission products, from thermal neutron fission of U-235 (typical of nuclear power reactors), computed from [http://books.elsevier.com/companions/075067136X/pdfs/Yield.bas?mscssid=HAX80JCKT7RB8LS6F675GU2LM83N1CL6]{{Dead link|date=December 2019 |bot=InternetArchiveBot |fix-attempted=yes }}.

The yields in the table sum to only 45.5522%, including 34.8401% which have half-lives greater than one year:

class="wikitable" style="text-align:right;"

! t½ in years !! Yield

1 to 52.7252%
10 to 10012.5340%
2 to 300,0006.1251%
1.5 to 16 million13.4494%

The remainder and the unlisted 54.4478% decay with half-lives less than one year into nonradioactive nuclei.

This is before accounting for the effects of any subsequent neutron capture; e.g.:

  • 135Xe capturing a neutron and becoming nearly stable 136Xe, rather than decaying to 135Cs which is radioactive with a half-life of 2.3 million years
  • Nonradioactive 133Cs capturing a neutron and becoming 134Cs, which is radioactive with a half-life of 2 years
  • Many of the fission products with mass 147 or greater such as 147Pm, 149Sm, 151Sm, and 155Eu have significant cross sections for neutron capture, so that one heavy fission product atom can undergo multiple successive neutron captures.

Besides fission products, the other types of radioactive products are

Fission products from U-235

class="wikitable sortable"

! Yield !! Element !! Isotope !! Halflife !! Comment

6.7896%Caesium{{hs|133 !}} 133Cs 134Cs{{ntsh|2}} 2.065 yNeutron capture (29 barns) slowly converts stable 133Cs to 134Cs, which itself is low-yield because beta decay stops at 134Xe; can be further converted (140 barns) to 135Cs.
6.3333%Iodine, xenon{{hs|135 !}} 135I 135Xe{{ntsh|0.0006}} 6.57 hMost important neutron poison; neutron capture converts 10–50% of 135Xe to 136Xe; remainder decays (9.14h) to 135Cs (2.3 My).
6.2956%Zirconium{{hs|93 !}} 93Zr{{ntsh|1530000}} 1.53 MyLong-lived fission product also produced by neutron activation in zircalloy cladding.
6.1%Molybdenum{{hs|98.9077 !}} 99Mo{{ntsh|0.003}} 65.94 hIts daughter nuclide 99mTc is important in medical diagnosing.
6.0899%Caesium{{hs|137 !}} 137Cs{{ntsh|30}} 30.17 ySource of most of the decay heat from years to decades after irradiation, together with {{chem|90|Sr}}.
6.0507%Technetium{{hs|98.9063 !}} 99Tc{{ntsh|211000}} 211 kyCandidate for disposal by nuclear transmutation.
5.7518%Strontium{{hs|90 !}} 90Sr{{ntsh|29}} 28.9 ySource of much of the decay heat together with {{chem|137|Cs}} on the timespan of years to decades after irradiation. Formerly used in radioisotope thermoelectric generators.
2.8336%Iodine{{hs|131 !}} 131I{{ntsh|0.008}} 8.02 dReason for the use of potassium iodide tablets after nuclear accidents or nuclear bomb explosions.
2.2713%Promethium{{hs|147 !}} 147Pm{{ntsh|2.6}} 2.62 ybeta decays to very long lived Samarium-147 (half life>age of the universe); has seen some use in radioisotope thermoelectric generators
1.0888%Samarium{{hs|149 !}} 149Sm{{ntsh|100000000}} Observationally stable2nd most significant neutron poison.
0.9%Purkayastha, B. C., and G. R. Martin. "The yields of 129I in natural and in neutron-induced fission of uranium." Canadian Journal of Chemistry 34.3 (1956): 293-300.Iodine{{hs|129 !}} 129I{{ntsh|15700000}} 15.7 MyLong-lived fission product. Candidate for disposal by nuclear transmutation.
0.4203%Samarium{{hs|151 !}} 151Sm{{ntsh|90}} 90 yNeutron poison; most will be converted to stable 152Sm.
0.3912%Ruthenium{{hs|106 !}} 106Ru{{ntsh|1}} 373.6 druthenium tetroxide is volatile and chemically aggressive; daughter nuclide {{chem|106|Rh}} decays quickly to stable {{chem|106|Pd}}
0.2717%Krypton{{hs|85 !}} 85Kr{{ntsh|11}} 10.78 ynoble gas; has some uses in industry to detect fine cracks in materials via autoradiography
0.1629%Palladium{{hs|107 !}} 107Pd{{ntsh|6500000}} 6.5 MyLong-lived fission product; hampers extraction of stable isotopes of platinum group metals for use due to chemical similarity.
0.0508%Selenium{{hs|79 !}} 79Se{{ntsh|327000}} 327 ky
0.0330%Europium, gadolinium{{hs|155 !}} 155Eu 155Gd{{ntsh|5}} 4.76 yBoth neutron poisons, most will be destroyed while fuel still in use.
0.0297%Antimony{{hs|125 !}} 125Sb{{ntsh|2.8}} 2.76 y
0.0236%Tin{{hs|126 !}} 126Sn{{ntsh|230000}} 230 ky
0.0065%Gadolinium{{hs|157 !}} 157Gd{{ntsh|100000000}} stableNeutron poison.
0.0003%Cadmium{{hs|133 !}} 113mCd{{ntsh|14}} 14.1 yNeutron poison, most will be destroyed while fuel still in use.

Image:fission yield.png, probably of Pu-239 not U-235 because left hump is shifted right, not considering later neutron capture, fraction of 100% not 200%. Beta decay Kr-85Rb, Sr-90Zr, Ru-106Pd, Sb-125Te, Cs-137Ba, Ce-144Nd, Sm-151Eu, Eu-155Gd visible.]]

Cumulative fission yields

Cumulative fission yields give the amounts of nuclides produced either directly in the fission or by decay of other nuclides.

class="wikitable" style="text-align:center;"
+ Cumulative fission yields per fission for U-235 (%){{cite web|title=Cumulative Fission Yields |url=https://www-nds.iaea.org/sgnucdat/c3.htm|website=www-nds.iaea.org|publisher=IAEA|access-date=11 November 2016}}
Product

! Thermal fission yield

! Fast fission yield

! 14-MeV fission yield

{{nuclide|H|1}}0.00171 ± 0.000180.00269 ± 0.000440.00264 ± 0.00045
{{nuclide|H|2}}0.00084 ± 0.000150.00082 ± 0.000120.00081 ± 0.00012
{{nuclide|H|3}}0.0108 ± 0.00040.0108 ± 0.00040.0174 ± 0.0036
{{nuclide|He|3}}0.0108 ± 0.00040.0108 ± 0.00040.0174 ± 0.0036
{{nuclide|He|4}}0.1702 ± 0.00490.17 ± 0.00490.1667 ± 0.0088
{{nuclide|Br|85}}1.304 ± 0.0121.309 ± 0.0431.64 ± 0.31
{{nuclide|Kr|82}}0.000285 ± 0.0000760.00044 ± 0.000160.038 ± 0.012
{{nuclide|Kr|85}}0.286 ± 0.0210.286 ± 0.0260.47 ± 0.1
{{nuclide|Kr|85m}}1.303 ± 0.0121.307 ± 0.0431.65 ± 0.31
{{nuclide|Sr|90}}5.73 ± 0.135.22 ± 0.184.41 ± 0.18
{{nuclide|Zr|95}}6.502 ± 0.0726.349 ± 0.0835.07 ± 0.19
{{nuclide|Nb|94}}0.00000042 ± 0.000000112.90±0.770 × 10−80.00004 ± 0.000015
{{nuclide|Nb|95}}6.498 ± 0.0726.345 ± 0.0835.07 ± 0.19
{{nuclide|Nb|95m}}0.0702 ± 0.00670.0686 ± 0.00710.0548 ± 0.0072
{{nuclide|Mo|92}}0 ± 00 ± 00 ± 0
{{nuclide|Mo|94}}8.70 × 10−10 ± 3.20 × 10−100 ± 06.20 × 10−8 ± 2.50 × 10−8
{{nuclide|Mo|96}}0.00042 ± 0.000150.000069 ± 0.0000250.0033 ± 0.0015
{{nuclide|Mo|99}}6.132 ± 0.0925.8 ± 0.135.02 ± 0.13
{{nuclide|Tc|99}}6.132 ± 0.0925.8 ± 0.135.02 ± 0.13
{{nuclide|Ru|103}}3.103 ± 0.0843.248 ± 0.0423.14 ± 0.11
{{nuclide|Ru|106}}0.41 ± 0.0110.469 ± 0.0362.15 ± 0.59
{{nuclide|Rh|106}}0.41 ± 0.0110.469 ± 0.0362.15 ± 0.59
{{nuclide|Sn|121m}}0.00106 ± 0.000110.0039 ± 0.000910.142 ± 0.023
{{nuclide|Sb|122}}0.000000366 ± 0.0000000980.0000004 ± 0.000000140.00193 ± 0.00068
{{nuclide|Sb|124}}0.000089 ± 0.0000210.000112 ± 0.0000340.027 ± 0.01
{{nuclide|Sb|125}}0.026 ± 0.00140.067 ± 0.0111.42 ± 0.42
{{nuclide|Te|132}}4.276 ± 0.0434.639 ± 0.0653.85 ± 0.16
{{nuclide|I|129}}0.706 ± 0.0321.03 ± 0.261.59 ± 0.18
{{nuclide|I|131}}2.878 ± 0.0323.365 ± 0.0544.11 ± 0.14
{{nuclide|I|133}}6.59 ± 0.116.61 ± 0.135.42 ± 0.4
{{nuclide|I|135}}6.39 ± 0.226.01 ± 0.184.8 ± 1.4
{{nuclide|Xe|128}}0 ± 00 ± 00.00108 ± 0.00048
{{nuclide|Xe|130}}0.000038 ± 0.00000980.000152 ± 0.0000550.038 ± 0.014
{{nuclide|Xe|131m}}0.0313 ± 0.0030.0365 ± 0.00310.047 ± 0.0049
{{nuclide|Xe|133}}6.6 ± 0.116.61 ± 0.135.57 ± 0.41
{{nuclide|Xe|133m}}0.189 ± 0.0150.19 ± 0.0150.281 ± 0.049
{{nuclide|Xe|135}}6.61 ± 0.226.32 ± 0.186.4 ± 1.8
{{nuclide|Xe|135m}}1.22 ± 0.121.23 ± 0.132.17 ± 0.66
{{nuclide|Cs|134}}0.0000121 ± 0.00000320.0000279 ± 0.00000730.0132 ± 0.0035
{{nuclide|Cs|137}}6.221 ± 0.0695.889 ± 0.0965.6 ± 1.3
{{nuclide|Ba|140}}6.314 ± 0.0955.959 ± 0.0484.474 ± 0.081
{{nuclide|La|140}}6.315 ± 0.0955.96 ± 0.0484.508 ± 0.081
{{nuclide|Ce|141}}5.86 ± 0.155.795 ± 0.0814.44 ± 0.2
{{nuclide|Ce|144}}5.474 ± 0.0555.094 ± 0.0763.154 ± 0.038
{{nuclide|Pr|144}}5.474 ± 0.0555.094 ± 0.0763.155 ± 0.038
{{nuclide|Nd|142}}6.30 × 10−9 ± 1.70 × 10−91.70 × 10−9 ± 4.80 × 10−100.0000137 ± 0.0000049
{{nuclide|Nd|144}}5.475 ± 0.0555.094 ± 0.0763.155 ± 0.038
{{nuclide|Nd|147}}2.232 ± 0.042.148 ± 0.0281.657 ± 0.045
{{nuclide|Pm|147}}2.232 ± 0.042.148 ± 0.0281.657 ± 0.045
{{nuclide|Pm|148}}5.00 × 10−8 ± 1.70 × 10−87.40 × 10−9 ± 2.50 × 10−90.0000013 ± 0.00000042
{{nuclide|Pm|148m}}0.000000104 ± 0.0000000391.78 × 10−8 ± 6.60 × 10−90.0000048 ± 0.0000018
{{nuclide|Pm|149}}1.053 ± 0.0211.064 ± 0.030.557 ± 0.09
{{nuclide|Pm|151}}0.4204 ± 0.00710.431 ± 0.0150.388 ± 0.061
{{nuclide|Sm|148}}0.000000149 ± 0.0000000412.43 × 10−8 ± 6.80 × 10−90.0000058 ± 0.0000018
{{nuclide|Sm|150}}0.000061 ± 0.0000220.0000201 ± 0.00000770.00045 ± 0.00018
{{nuclide|Sm|151}}0.4204 ± 0.00710.431 ± 0.0150.388 ± 0.061
{{nuclide|Sm|153}}0.1477 ± 0.00710.1512 ± 0.00970.23 ± 0.015
{{nuclide|Eu|151}}0.4204 ± 0.00710.431 ± 0.0150.388 ± 0.061
{{nuclide|Eu|152}}3.24 × 10−10 ± 8.50 × 10−110 ± 03.30 × 10−8 ± 1.10 × 10−8
{{nuclide|Eu|154}}0.000000195 ± 0.0000000644.00 × 10−8 ± 1.10 × 10−80.0000033 ± 0.0000011
{{nuclide|Eu|155}}0.0308 ± 0.00130.044 ± 0.010.088 ± 0.014

class="wikitable" style="text-align:center;"
+ Cumulative fission yield per fission for Pu-239 (%)
Product

! Thermal fission yield

! Fast fission yield

! 14-MeV fission yield

{{nuclide|H|1}}0.00408 ± 0.000410.00346 ± 0.00057-
{{nuclide|H|2}}0.00135 ± 0.000190.00106 ± 0.00016-
{{nuclide|H|3}}0.0142 ± 0.00070.0142 ± 0.0007-
{{nuclide|He|3}}0.0142 ± 0.00070.0142 ± 0.0007-
{{nuclide|He|4}}0.2192 ± 0.0090.219 ± 0.009-
{{nuclide|Br|85}}0.574 ± 0.0260.617 ± 0.049-
{{nuclide|Kr|82}}0.00175 ± 0.00060.00055 ± 0.0002-
{{nuclide|Kr|85}}0.136 ± 0.0140.138 ± 0.017-
{{nuclide|Kr|85m}}0.576 ± 0.0260.617 ± 0.049-
{{nuclide|Sr|90}}2.013 ± 0.0542.031 ± 0.057-
{{nuclide|Zr|95}}4.949 ± 0.0994.682 ± 0.098-
{{nuclide|Nb|94}}0.0000168 ± 0.00000450.00000255 ± 0.00000069-
{{nuclide|Nb|95}}4.946 ± 0.0994.68 ± 0.098-
{{nuclide|Nb|95m}}0.0535 ± 0.00660.0506 ± 0.0062-
{{nuclide|Mo|92}}0 ± 00 ± 0-
{{nuclide|Mo|94}}3.60 × 10−8 ± 1.30 × 10−84.80 × 10−9 ± 1.70 × 10−9-
{{nuclide|Mo|96}}0.0051 ± 0.00180.0017 ± 0.00062-
{{nuclide|Mo|99}}6.185 ± 0.0565.82 ± 0.13-
{{nuclide|Tc|99}}6.184 ± 0.0565.82 ± 0.13-
{{nuclide|Ru|103}}6.948 ± 0.0836.59 ± 0.16-
{{nuclide|Ru|106}}4.188 ± 0.0924.13 ± 0.24-
{{nuclide|Rh|106}}4.188 ± 0.0924.13 ± 0.24-
{{nuclide|Sn|121m}}0.0052 ± 0.00110.0053 ± 0.0012-
{{nuclide|Sb|122}}0.000024 ± 0.00000630.0000153 ± 0.000005-
{{nuclide|Sb|124}}0.00228 ± 0.000490.00154 ± 0.00043-
{{nuclide|Sb|125}}0.117 ± 0.0150.138 ± 0.022-
{{nuclide|Te|132}}5.095 ± 0.0944.92 ± 0.32-
{{nuclide|I|129}}1.407 ± 0.0861.31 ± 0.13-
{{nuclide|I|131}}3.724 ± 0.0784.09 ± 0.12-
{{nuclide|I|133}}6.97 ± 0.136.99 ± 0.33-
{{nuclide|I|135}}6.33 ± 0.236.24 ± 0.22-
{{nuclide|Xe|128}}0.00000234 ± 0.000000850.0000025 ± 0.0000012-
{{nuclide|Xe|130}}0.00166 ± 0.000560.00231 ± 0.00085-
{{nuclide|Xe|131m}}0.0405 ± 0.0040.0444 ± 0.0044-
{{nuclide|Xe|133}}6.99 ± 0.137.03 ± 0.33-
{{nuclide|Xe|133m}}0.216 ± 0.0160.223 ± 0.021-
{{nuclide|Xe|135}}7.36 ± 0.247.5 ± 0.23-
{{nuclide|Xe|135m}}1.78 ± 0.211.97 ± 0.25-
{{nuclide|Cs|134}}0.00067 ± 0.000180.00115 ± 0.0003-
{{nuclide|Cs|137}}6.588 ± 0.086.35 ± 0.12-
{{nuclide|Ba|140}}5.322 ± 0.0595.303 ± 0.074-
{{nuclide|La|140}}5.333 ± 0.0595.324 ± 0.075-
{{nuclide|Ce|141}}5.205 ± 0.0735.01 ± 0.16-
{{nuclide|Ce|144}}3.755 ± 0.033.504 ± 0.053-
{{nuclide|Pr|144}}3.756 ± 0.033.505 ± 0.053-
{{nuclide|Nd|142}}0.00000145 ± 0.00000040.00000251 ± 0.00000072-
{{nuclide|Nd|144}}3.756 ± 0.033.505 ± 0.053-
{{nuclide|Nd|147}}2.044 ± 0.0391.929 ± 0.046-
{{nuclide|Pm|147}}2.044 ± 0.0391.929 ± 0.046-
{{nuclide|Pm|148}}0.0000056 ± 0.00000190.000012 ± 0.000004-
{{nuclide|Pm|148m}}0.0000118 ± 0.00000440.000029 ± 0.000011-
{{nuclide|Pm|149}}1.263 ± 0.0321.275 ± 0.056-
{{nuclide|Pm|151}}0.776 ± 0.0180.796 ± 0.037-
{{nuclide|Sm|148}}0.0000168 ± 0.00000460.000039 ± 0.000011-
{{nuclide|Sm|150}}0.00227 ± 0.000780.0051 ± 0.0019-
{{nuclide|Sm|151}}0.776 ± 0.0180.797 ± 0.037-
{{nuclide|Sm|153}}0.38 ± 0.030.4 ± 0.18-
{{nuclide|Eu|151}}0.776 ± 0.0180.797 ± 0.037-
{{nuclide|Eu|152}}0.000000195 ± 0.000000050.00000048 ± 0.00000014-
{{nuclide|Eu|154}}0.000049 ± 0.0000120.000127 ± 0.000043-
{{nuclide|Eu|155}}0.174 ± 0.030.171 ± 0.054-

class="wikitable"
style="width:12em;" | JEFF-3.1

| style="width:60em;" |

Joint Evaluated Fission and Fusion File, Incident-neutron data,

http://www-nds.iaea.org/exfor/endf00.htm, 2 October 2006;

see also A. Koning, R. Forrest, M. Kellett, R. Mills, H. Henriksson,

Y. Rugama, The JEFF-3.1 Nuclear Data Library, JEFF Report 21,

OECD/NEA, Paris, France, 2006, {{ISBN|92-64-02314-3}}.

Image:fission yield.png, probably of Pu-239 not U-235 because left hump is shifted right, not considering later neutron capture, fraction of 100% not 200%. Beta decay Kr-85Rb, Sr-90Zr, Ru-106Pd, Sb-125Te, Cs-137Ba, Ce-144Nd, Sm-151Eu, Eu-155Gd visible.]]

Ordered by mass number

Decays, even if lengthy, are given down to the stable nuclide.

Decays with half lives longer than a century are marked with a single asterisk ({{asterisk}}), while decays with a half life longer than a hundred million years are marked with two asterisks ({{asterisk}}{{asterisk}}).

class="wikitable sortable"

! Yield !! Isotope

0.0508%style="background:{{element color|p-block}}" | selenium-79*style="background:{{element color|p-block}}" | bromine-79
0.2717%style="background:{{element color|p-block}}" | krypton-85style="background:{{element color|s-block}}" | rubidium-85
5.7518%style="background:{{element color|s-block}}" | strontium-90 style="background:{{element color|d-block}}" | yttrium-90style="background:{{element color|d-block}}" | zirconium-90
6.2956%style="background:{{element color|d-block}}" | zirconium-93 *style="background:{{element color|d-block}}" | niobium-93
6.0507%style="background:{{element color|d-block}}" | technetium-99*style="background:{{element color|d-block}}" | ruthenium-99
0.3912%style="background:{{element color|d-block}}" | ruthenium-106style="background:{{element color|d-block}}" | rhodium-106style="background:{{element color|d-block}}" | palladium-106
0.1629%style="background:{{element color|d-block}}" | palladium-107*style="background:{{element color|d-block}}" | silver-107
0.0003%style="background:{{element color|d-block}}" | cadmium-113mstyle="background:{{element color|d-block}}" | cadmium-113 (essentially stable)**style="background:{{element color|p-block}}" | indium-113
0.0297%style="background:{{element color|p-block}}" | antimony-125style="background:{{element color|p-block}}" | tellurium-125mstyle="background:{{element color|p-block}}" | tellurium-125
0.0236%style="background:{{element color|p-block}}" | tin-126 *style="background:{{element color|p-block}}" | antimony-126style="background:{{element color|p-block}}" | tellurium-126
0.9%style="background:{{element color|p-block}}" | iodine-129*style="background:{{element color|p-block}}" | xenon-129
2.8336%style="background:{{element color|p-block}}" | iodine-131style="background:{{element color|p-block}}" | xenon-131
6.7896%style="background:{{element color|s-block}}" | caesium-133 style="background:{{element color|s-block}}" | caesium-134style="background:{{element color|s-block}}" | barium-134
6.3333%style="background:{{element color|p-block}}" | iodine-135 style="background:{{element color|p-block}}" | xenon-135 style="background:{{element color|s-block}}" | caesium-135*style="background:{{element color|s-block}}" | barium-135
6.3333%style="background:{{element color|p-block}}" | iodine-135 style="background:{{element color|p-block}}" | xenon-135 style="background:{{element color|p-block}}" | xenon-136 (essentially stable)**style="background:{{element color|s-block}}" | barium-136
6.0899%style="background:{{element color|s-block}}" | caesium-137style="background:{{element color|s-block}}" | barium-137
2.2713%style="background:{{element color|f-block}}" | promethium-147style="background:{{element color|f-block}}" | samarium-147*style="background:{{element color|f-block}}" | neodymium-143
1.0888%style="background:{{element color|f-block}}" | samarium-149
0.4203%style="background:{{element color|f-block}}" | samarium-151
0.0330%style="background:{{element color|f-block}}" | europium-155 style="background:{{element color|f-block}}" | gadolinium-155
0.0065%style="background:{{element color|f-block}}" | gadolinium-157

Half lives, decay modes, and branching fractions

class="wikitable"

|+ Half-lives and decay branching fractions for fission products{{cite web |title=Half-lives and decay branching fractions for activation products |url=https://www-nds.iaea.org/sgnucdat/d1.htm |website=www-nds.iaea.org |publisher=IAEA |access-date=11 November 2016}}

NuclideHalf-lifeDecay modeBranching fractionSourceNotes
{{nuclide|Br|85}}2.9 ± 0.06 mβ1.0Evaluated Nuclear Structure Data File, http://www-nds.iaea.org/ensdf/, 26 January 2006.{{efn|β{{sup|−}} decay branches of 0.9982 ± 0.0002 to Kr-85m and 0.0018 ± 0.0002 to Kr-85.}}
{{nuclide|Kr|85}}10.752 ± 0.023 yβ1.0M.-M. Bé, V. Chisté, C. Dulieu, E. Browne, V. Chechev, N. Kuzmenko, R. Helmer, A. Nichols,

E. Schönfeld, R. Dersch, Monographie BIPM-5, Table of Radionuclides, Vol. 2 - A = 151 to 242, 2004.

rowspan="2" | {{nuclide|Kr|85m}}rowspan="2" | 4.48 ± 0.008 hIT0.214 ± 0.005rowspan="2" |
β0.786 ± 0.005
{{nuclide|Sr|90}}28.8 ± 0.07 yβ1.0Laboratoire National Henri Becquerel, Recommended Data, http://www.nucleide.org/DDEP_WG/DDEPdata.htm {{Webarchive|url=https://web.archive.org/web/20210213021408/http://www.nucleide.org/DDEP_WG/DDEPdata.htm |date=2021-02-13 }}, 16 January 2006.
{{nuclide|Zr|95}}64.032 ± 0.006 dβ1.0
{{nuclide|Nb|94}}(7.3 ± 0.9) × 106 dβ1.0M.-M. Bé, V.P. Chechev, R. Dersch, O.A.M. Helene, R.G. Helmer, M. Herman, S. Hlavác,

A. Marcinkowski, G.L. Molnár, A.L. Nichols, E. Schönfeld, V.R. Vanin, M.J. Woods, IAEA CRP "Update of X-ray and Gamma-ray Decay Data Standards for Detector Calibration and Other Applications", IAEA Scientific and Technical Information report STI/PUB/1287, May 2007, International Atomic Energy Agency, Vienna, Austria, {{ISBN|92-0-113606-4}}.

rowspan="2" | {{nuclide|Nb|95m}}rowspan="2" | 3.61 ± 0.03 dβ0.025 ± 0.001rowspan="2" | rowspan="2" | {{efn|ENSDF branching fractions: 0.944 ± 0.007 for IT and 0.056 ± 0.007 for β{{sup|−}}.}}
IT0.975 ± 0.001
{{nuclide|Nb|95}}34.985 ± 0.012 dβ1.0
{{nuclide|Tc|99}}(2.111 ± 0.012) × 105 yβ1.0
{{nuclide|Ru|103}}39.247 ± 0.013 dβ1.0
{{nuclide|Ru|106}}1.018 ± 0.005 yβ1.0
{{nuclide|Rh|106}}30.1 ± 0.3 sβ1.0
rowspan="2" | {{nuclide|Sn|121m}}rowspan="2" | 55 ± 5 yβ0.224 ± 0.02rowspan="2" |
IT0.776 ± 0.02
rowspan="2" | {{nuclide|Sb|122}}rowspan="2" | 2.7238 ± 0.0002 dEC0.0241 ± 0.0012rowspan="2" |
β0.9759 ± 0.0012
{{nuclide|Sb|124}}60.2 ± 0.03 dβ1.0
{{nuclide|Sb|125}}2.7584 ± 0.0006 yβ1.0
{{nuclide|I|129}}(5.89 ± 0.23) × 109 dβ1.0
{{nuclide|I|131}}8.0233 ± 0.0019 dβ1.0
{{nuclide|I|133}}20.87 ± 0.08 hβ1.0{{efn|β{{sup|−}} decay branch of 0.0288 ± 0.0002 to Xe-133m.}}
{{nuclide|I|135}}6.57 ± 0.02 hβ1.0
{{nuclide|Xe|131m}}11.930 ± 0.016 dIT1.0
{{nuclide|Xe|133}}5.243 ± 0.001 dβ1.0
{{nuclide|Xe|133m}}2.19 ± 0.01 dIT1.0
{{nuclide|Xe|135}}9.14 ± 0.02 hβ1.0
rowspan="2" | {{nuclide|Xe|135m}}rowspan="2" | 15.29 ± 0.05 mβ0.003 ± 0.003rowspan="2" | rowspan="2" | {{efn|Branching fractions were averaged from ENSDF database.}}
IT0.997 ± 0.003
rowspan="2"| {{nuclide|Cs|134}}rowspan="2" | 2.063 ± 0.003 yEC0.000003 ± 0.000001rowspan="2" | rowspan="2" | {{efn|Branching fractions were adopted from ENSDF database.}}
β0.999997 ± 0.000001
{{nuclide|Cs|137}}30.05 ± 0.08 yβ1.0
{{nuclide|Ba|140}}12.753 ± 0.004 dβ1.0
{{nuclide|La|140}}1.67850 ± 0.00017 dβ1.0
{{nuclide|Ce|141}}32.508 ± 0.010 dβ1.0
{{nuclide|Ce|144}}285.1 ± 0.6 dβ1.0
{{nuclide|Pr|144}}17.28 ± 0.05 mβ1.0
{{nuclide|Nd|147}}10.98 ± 0.01 dβ1.0
{{nuclide|Pm|147}}2.6234 ± 0.0002 yβ1.0
rowspan="2" | {{nuclide|Pm|148m}}rowspan="2" | 41.29 ± 0.11 dIT0.042 ± 0.007rowspan="2" |
β0.958 ± 0.007
{{nuclide|Pm|148}}5.368 ± 0.002 dβ1.0
{{nuclide|Pm|149}}2.2117 ± 0.0021 dβ1.0
{{nuclide|Pm|151}}1.1833 ± 0.0017 dβ1.0
{{nuclide|Sm|151}}90 ± 6 yβ1.0
{{nuclide|Sm|153}}1.938 ± 0.010 dβ1.0
rowspan="2" | {{nuclide|Eu|152}}rowspan="2" | (4.941 ± 0.007) × 103 dβ0.279 ± 0.003rowspan="2" | rowspan="2" | {{efn|name=LNHBadopted|Branching fractions were adopted from LNHB data.}}
EC0.721 ± 0.003
rowspan="2" | {{nuclide|Eu|154}}rowspan="2" | (3.1381 ± 0.0014) × 103 dEC0.00018 ± 0.00013rowspan="2" | rowspan="2" | {{efn|name=LNHBadopted}}
β0.99982 ± 0.00013
{{nuclide|Eu|155}}4.753 ± 0.016 yβ1.0

{{noteslist}}

Ordered by thermal neutron absorption cross section

class="wikitable sortable"

! Barns !! Yield !! Isotope !! t½ !! Comment

align=right| {{nts|2650000}}6.3333%{{hs|iodine-135}} 135I 135Xe{{ntsh|0.0006}} 6.57 hMost important neutron poison; neutron capture rapidly converts 135Xe to 136Xe; remainder decays (9.14 h) to 135Cs (2.3 My).
align=right| {{nts|254000}}0.0065%{{hs|gadolinium}} 157GdNeutron poison, but low yield.
align=right| {{nts|40140}}1.0888%{{hs|samarium-149}} 149Sm2nd most important neutron poison.
align=right| {{nts|20600}}0.0003%{{hs|cadmium}} 113mCd{{ntsh|14}} 14.1 yMost will be destroyed by neutron capture.
align=right| {{nts|15200}}0.4203%{{hs|samarium-151}} 151Sm{{ntsh|90}} 90 yMost will be destroyed by neutron capture.
align=right| {{nts|3950}}
60,900
0.0330%{{hs|europium}} 155Eu 155Gd{{ntsh|5}} 4.76 yBoth neutron poisons.
align=right| {{nts|96}}2.2713%{{hs|promethium}} 147Pm{{ntsh|2.6}} 2.62 ySuitable for radioisotope thermoelectric generators with annual or semi-annual refueling.
align=right| {{nts|80}}2.8336%{{hs|iodine-131}} 131I{{ntsh|0.008}} 8.02 d
align=right| {{nts|29}}
140
6.7896%{{hs|caesium-133}} 133Cs 134Cs
2.065 y
Neutron capture converts a few percent of nonradioactive 133Cs to 134Cs, which has very low direct yield because beta decay stops at 134Xe; further capture will add to long-lived 135Cs.
align=right| {{nts|20}}6.0507%{{hs|technetium}} 99Tc{{ntsh|211000}} 211 kyCandidate for disposal by nuclear transmutation.
align=right| {{nts|18}}0.6576%{{hs|iodine-129}} 129I{{ntsh|15700000}} 15.7 MyCandidate for disposal by nuclear transmutation.
align=right| {{nts|2.7}}6.2956%{{hs|zirconium}} 93Zr{{ntsh|1530000}} 1.53 MyTransmutation impractical.
align=right| {{nts|1.8}}0.1629%{{hs|palladium}} 107Pd{{ntsh|6500000}} 6.5 My
align=right| {{nts|1.66}}0.2717%{{hs|krypton}} 85Kr{{ntsh|11}} 10.78 y
align=right| {{nts|0.90}}5.7518%{{hs|strontium}} 90Sr{{ntsh|29}} 28.9 y
align=right| {{nts|0.15}}0.3912%{{hs|ruthenium}} 106Ru{{ntsh|1}} 373.6 d
align=right| {{nts|0.11}}6.0899%{{hs|caesium-137}} 137Cs{{ntsh|30}} 30.17 y
0.0297%{{hs|antimony}} 125Sb{{ntsh|2.7}} 2.76 y
0.0236%{{hs|tin}} 126Sn{{ntsh|230000}} 230 ky
0.0508%{{hs|selenium}} 79Se{{ntsh|327000}} 327 ky

References