flag bundle
In algebraic geometry, the flag bundle of a flagHere, is a subbundle not subsheaf of
:
of vector bundles on an algebraic scheme X is the algebraic scheme over X:
:
such that is a flag of vector spaces such that is a vector subspace of of dimension i.
If X is a point, then a flag bundle is a flag variety and if the length of the flag is one, then it is the Grassmann bundle; hence, a flag bundle is a common generalization of these two notions.
Construction
A flag bundle can be constructed inductively.
References
{{Reflist}}
- {{Citation | title=Intersection theory | publisher=Springer-Verlag | location=Berlin, New York | series=Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. | isbn=978-3-540-62046-4 | mr=1644323 | year=1998 | volume=2 | edition=2nd | author=William Fulton.}}
- Expo. VI, § 4. of {{cite book
| editor-last = Berthelot
| editor-first = Pierre
| editor-link = Pierre Berthelot (mathematician)
| editor2=Alexandre Grothendieck
| editor3=Luc Illusie
| title = Séminaire de Géométrie Algébrique du Bois Marie - 1966-67 - Théorie des intersections et théorème de Riemann-Roch - (SGA 6) (Lecture notes in mathematics 225)
| year = 1971
| volume = 225
| publisher = Springer-Verlag
| location = Berlin; New York
| language = fr
| pages = xii+700
| no-pp = true
|doi=10.1007/BFb0066283
|isbn= 978-3-540-05647-8
| mr = 0354655
}}
{{algebraic-geometry-stub}}