fractional programming
In mathematical optimization, fractional programming is a generalization of linear-fractional programming. The objective function in a fractional program is a ratio of two functions that are in general nonlinear. The ratio to be optimized often describes some kind of efficiency of a system.
Definition
Let be real-valued functions defined on a set . Let . The nonlinear program
:
\underset{\boldsymbol{x} \in \mathbf{S}}{\text{maximize}} \quad \frac{f(\boldsymbol{x})}{g(\boldsymbol{x})},
where on , is called a fractional program.
Concave fractional programs
A fractional program in which f is nonnegative and concave, g is positive and convex, and S is a convex set is called a concave fractional program. If g is affine, f does not have to be restricted in sign. The linear fractional program is a special case of a concave fractional program where all functions are affine.
=Properties=
The function is semistrictly quasiconcave on S. If f and g are differentiable, then q is pseudoconcave. In a linear fractional program, the objective function is pseudolinear.
=Transformation to a concave program=
By the transformation , any concave fractional program can be transformed to the equivalent parameter-free concave program{{cite journal|last1=Schaible |first1=Siegfried |title=Parameter-free Convex Equivalent and Dual Programs|journal=Zeitschrift für Operations Research |volume=18 |year=1974 |number=5 |pages=187–196|doi=10.1007/BF02026600|mr=351464|s2cid=28885670 }}
:
\begin{align}
\underset{\frac{\boldsymbol{y}}{t} \in \mathbf{S}_0}{\text{maximize}} \quad & t f\left(\frac{\boldsymbol{y}}{t}\right) \\
\text{subject to} \quad & t g\left(\frac{\boldsymbol{y}}{t}\right) \leq 1, \\
& t \geq 0.
\end{align}
If g is affine, the first constraint is changed to and the assumption that g is positive may be dropped. Also, it simplifies to .
=Duality=
The Lagrangian dual of the equivalent concave program is
:
\begin{align}
\underset{\boldsymbol{u}}{\text{minimize}} \quad & \underset{\boldsymbol{x} \in \mathbf{S}_0}{\operatorname{sup}} \frac{f(\boldsymbol{x}) - \boldsymbol{u}^T \boldsymbol{h}(\boldsymbol{x})}{g(\boldsymbol{x})} \\
\text{subject to} \quad & u_i \geq 0, \quad i = 1,\dots,m.
\end{align}
Notes
References
- {{cite book |last1=Avriel |first1=Mordecai |last2=Diewert |first2=Walter E. |last3=Schaible |first3=Siegfried |last4=Zang |first4=Israel |title=Generalized Concavity |publisher=Plenum Press |year=1988}}
- {{cite journal |title=Fractional programming |last1=Schaible |first1=Siegfried |journal=Zeitschrift für Operations Research |volume=27 |year=1983 |pages=39–54 |doi=10.1007/bf01916898|s2cid=28766871 }}
{{Major subfields of optimization}}