fractional programming

In mathematical optimization, fractional programming is a generalization of linear-fractional programming. The objective function in a fractional program is a ratio of two functions that are in general nonlinear. The ratio to be optimized often describes some kind of efficiency of a system.

Definition

Let f, g, h_j, j=1, \ldots, m be real-valued functions defined on a set \mathbf{S}_0 \subset \mathbb{R}^n. Let \mathbf{S} = \{\boldsymbol{x} \in \mathbf{S}_0: h_j(\boldsymbol{x}) \leq 0, j=1, \ldots, m\}. The nonlinear program

:

\underset{\boldsymbol{x} \in \mathbf{S}}{\text{maximize}} \quad \frac{f(\boldsymbol{x})}{g(\boldsymbol{x})},

where g(\boldsymbol{x}) > 0 on \mathbf{S}, is called a fractional program.

Concave fractional programs

A fractional program in which f is nonnegative and concave, g is positive and convex, and S is a convex set is called a concave fractional program. If g is affine, f does not have to be restricted in sign. The linear fractional program is a special case of a concave fractional program where all functions f, g, h_j, j=1, \ldots, m are affine.

=Properties=

The function q(\boldsymbol{x}) = f(\boldsymbol{x}) / g(\boldsymbol{x}) is semistrictly quasiconcave on S. If f and g are differentiable, then q is pseudoconcave. In a linear fractional program, the objective function is pseudolinear.

=Transformation to a concave program=

By the transformation \boldsymbol{y} = \frac{\boldsymbol{x}}{g(\boldsymbol{x})}; t = \frac{1}{g(\boldsymbol{x})}, any concave fractional program can be transformed to the equivalent parameter-free concave program{{cite journal|last1=Schaible |first1=Siegfried |title=Parameter-free Convex Equivalent and Dual Programs|journal=Zeitschrift für Operations Research |volume=18 |year=1974 |number=5 |pages=187–196|doi=10.1007/BF02026600|mr=351464|s2cid=28885670 }}

:

\begin{align}

\underset{\frac{\boldsymbol{y}}{t} \in \mathbf{S}_0}{\text{maximize}} \quad & t f\left(\frac{\boldsymbol{y}}{t}\right) \\

\text{subject to} \quad & t g\left(\frac{\boldsymbol{y}}{t}\right) \leq 1, \\

& t \geq 0.

\end{align}

If g is affine, the first constraint is changed to t g(\frac{\boldsymbol{y}}{t}) = 1 and the assumption that g is positive may be dropped. Also, it simplifies to g(\boldsymbol{y}) = 1.

=Duality=

The Lagrangian dual of the equivalent concave program is

:

\begin{align}

\underset{\boldsymbol{u}}{\text{minimize}} \quad & \underset{\boldsymbol{x} \in \mathbf{S}_0}{\operatorname{sup}} \frac{f(\boldsymbol{x}) - \boldsymbol{u}^T \boldsymbol{h}(\boldsymbol{x})}{g(\boldsymbol{x})} \\

\text{subject to} \quad & u_i \geq 0, \quad i = 1,\dots,m.

\end{align}

Notes

References

  • {{cite book |last1=Avriel |first1=Mordecai |last2=Diewert |first2=Walter E. |last3=Schaible |first3=Siegfried |last4=Zang |first4=Israel |title=Generalized Concavity |publisher=Plenum Press |year=1988}}
  • {{cite journal |title=Fractional programming |last1=Schaible |first1=Siegfried |journal=Zeitschrift für Operations Research |volume=27 |year=1983 |pages=39–54 |doi=10.1007/bf01916898|s2cid=28766871 }}

{{Major subfields of optimization}}

Category:Optimization algorithms and methods