fundamental lemma (Langlands program)

{{Short description|Theorem in abstract algebra}}

In the mathematical theory of automorphic forms, the fundamental lemma relates orbital integrals on a reductive group over a local field to stable orbital integrals on its endoscopic groups.{{Clarify|date=December 2021|reason=The opening sentence needs to be understandable (to some degree) by a non-mathematician }} It was conjectured by {{harvs|txt|authorlink=Robert Langlands|last=Langlands|first=Robert|year=1983}} in the course of developing the Langlands program. The fundamental lemma was proved by Gérard Laumon and Ngô Bảo Châu in the case of unitary groups and then by {{harvtxt|Ngô|2010}} for general reductive groups, building on a series of important reductions made by Jean-Loup Waldspurger to the case of Lie algebras. Time magazine placed Ngô's proof on the list of the "Top 10 scientific discoveries of 2009".{{cite web |url=http://www.time.com/time/specials/packages/article/0,28804,1945379_1944416_1944435,00.html |archive-url=https://web.archive.org/web/20091213010530/http://www.time.com/time/specials/packages/article/0,28804,1945379_1944416_1944435,00.html |url-status=dead |archive-date=December 13, 2009 |title=Top 10 Scientific Discoveries of 2009 |newspaper=Time |access-date=December 14, 2009 }} In 2010, Ngô was awarded the Fields Medal for this proof.

Motivation and history

Langlands outlined a strategy for proving local and global Langlands conjectures using the Arthur–Selberg trace formula, but in order for this approach to work, the geometric sides of the trace formula for different groups must be related in a particular way. This relationship takes the form of identities between orbital integrals on reductive groups G and H over a nonarchimedean local field F, where the group H, called an endoscopic group of G, is constructed from G and some additional data.

The first case considered was G = {\rm SL}_2 {{harv|Labesse|Langlands|1979}}. {{harvs|txt|last1=Langlands|author2-link=Diana Shelstad|last2=Shelstad|first2=Diana|year=1987}} then developed the general framework for the theory of endoscopic transfer and formulated specific conjectures. However, during the next two decades only partial progress was made towards proving the fundamental lemma.Kottwitz and Rogawski for {\rm U}_3, Wadspurger for {\rm SL}_n, Hales and Weissauer for {\rm Sp}_4.[http://www.newton.ac.uk/programmes/ALT/seminars/051316301.pdf Fundamental Lemma and Hitchin Fibration] {{Webarchive|url=https://web.archive.org/web/20110717124801/http://www.newton.ac.uk/programmes/ALT/seminars/051316301.pdf |date=2011-07-17 }}, Gérard Laumon, May 13, 2009 Harris called it a "bottleneck limiting progress on a host of arithmetic questions".[http://www.institut.math.jussieu.fr/projets/fa/bpFiles/Introduction.pdf INTRODUCTION TO “THE STABLE TRACE FORMULA, SHIMURA VARIETIES, AND ARITHMETIC APPLICATIONS”] {{Webarchive|url=https://web.archive.org/web/20090731084436/http://www.institut.math.jussieu.fr/projets/fa/bpFiles/Introduction.pdf |date=2009-07-31 }}, p. 1., Michael Harris Langlands himself, writing on the origins of endoscopy, commented:

{{cquote|... it is not the fundamental lemma as such that is critical for the analytic theory of automorphic forms and for the arithmetic of Shimura varieties; it is the stabilized (or stable) trace formula, the reduction of the trace formula itself to the stable trace formula for a group and its endoscopic groups, and the stabilization of the Grothendieck–Lefschetz formula. None of these are possible without the fundamental lemma and its absence rendered progress almost impossible for more than twenty years.[http://publications.ias.edu/rpl/series.php?series=55 publications.ias.edu]}}

Statement

The fundamental lemma states that an orbital integral O for a group G is equal to a stable orbital integral SO for an endoscopic group H, up to a transfer factor Δ {{harv|Nadler|2012}}:

:SO_{\gamma_H}(1_{K_H}) = \Delta(\gamma_H,\gamma_G)O^\kappa_{\gamma_G}(1_{K_G})

where

  • F is a local field,
  • G is an unramified group defined over F, in other words a quasi-split reductive group defined over F that splits over an unramified extension of F,
  • H is an unramified endoscopic group of G associated to κ,
  • KG and KH are hyperspecial maximal compact subgroups of G and H, which means roughly that they are the subgroups of points with coefficients in the ring of integers of F,
  • 1KG and 1KH are the characteristic functions of KG and KH,
  • Δ(γHG) is a transfer factor, a certain elementary expression depending on γH and γG,
  • γH and γG are elements of G and H representing stable conjugacy classes, such that the stable conjugacy class of G is the transfer of the stable conjugacy class of H,
  • κ is a character of the group of conjugacy classes in the stable conjugacy class of γG,
  • SO and O are stable orbital integrals and orbital integrals depending on their parameters.

Approaches

{{harvtxt|Shelstad|1982}} proved the fundamental lemma for Archimedean fields.

{{harvtxt|Waldspurger|1991}} verified the fundamental lemma for general linear groups.

{{harvtxt|Kottwitz|1992}} and {{harvtxt|Blasius|Rogawski|1992}} verified some cases of the fundamental lemma for 3-dimensional unitary groups.

{{harvtxt|Hales|1997}} and {{harvtxt|Weissauer|2009}} verified the fundamental lemma for the symplectic and general symplectic groups Sp4, GSp4.

A paper of George Lusztig and David Kazhdan pointed out that orbital integrals could be interpreted as counting points on certain algebraic varieties over finite fields. Further, the integrals in question can be computed in a way that depends only on the residue field of F; and the issue can be reduced to the Lie algebra version of the orbital integrals. Then the problem was restated in terms of the Springer fiber of algebraic groups.[http://www.claymath.org/research_award/Laumon-Ngo/laumon.pdf The Fundamental Lemma for Unitary Groups] {{webarchive|url=https://web.archive.org/web/20100612234411/http://claymath.org/research_award/Laumon-Ngo/laumon.pdf |date=2010-06-12 }}, at p. 12., Gérard Laumon The circle of ideas was connected to a purity conjecture; Laumon gave a conditional proof based on such a conjecture, for unitary groups. {{harvs|txt|last1=Laumon|last2=Ngô|year=2008}} then proved the fundamental lemma for unitary groups, using Hitchin fibration introduced by {{harvs|txt|last=Ngô|year=2006}}, which is an abstract geometric analogue of the Hitchin system of complex algebraic geometry.

{{harvtxt|Waldspurger|2006}} showed for Lie algebras that the function field case implies the fundamental lemma over all local fields, and {{harvtxt|Waldspurger|2008}} showed that the fundamental lemma for Lie algebras implies the fundamental lemma for groups.

Notes

{{reflist}}

References

  • {{Citation | last1=Blasius | first1=Don | last2=Rogawski | first2=Jonathan D. | editor1-last=Langlands | editor1-first=Robert P. | editor2-last=Ramakrishnan | editor2-first=Dinakar | title=The zeta functions of Picard modular surfaces | publisher=Univ. Montréal | location=Montreal, QC | isbn=978-2-921120-08-1 | mr=1155234 | year=1992 | chapter=Fundamental lemmas for U(3) and related groups | pages=363–394}}
  • {{citation|last=Casselman|first=W.|title=Langlands' Fundamental Lemma for SL(2)|url=http://www.math.ubc.ca/~cass/research/pdf/SL2.pdf|year=2009}}
  • {{citation|first=Jean-François|last=Dat|url=http://www.math.univ-paris13.fr/~dat/publis/lf.pdf|title=Lemme fondamental et endoscopie, une approche géométrique, d'après Gérard Laumon et Ngô Bao Châu|publisher=Séminaire Bourbaki, no 940|date=November 2004}}
  • {{Citation | last1=Hales | first1=Thomas C. | title=The fundamental lemma for Sp(4) | doi=10.1090/S0002-9939-97-03546-6 | mr=1346977 | year=1997 | journal=Proceedings of the American Mathematical Society | issn=0002-9939 | volume=125 | issue=1 | pages=301–308| doi-access=free }}
  • {{citation|url=http://www.institut.math.jussieu.fr/projets/fa/bp0.html|editor-last=Harris|editor-first=M.|title=Stabilisation de la formule des traces, variétés de Shimura, et applications arithmétiques|access-date=2012-01-04|archive-url=https://web.archive.org/web/20120420195831/http://www.institut.math.jussieu.fr/projets/fa/bp0.html|archive-date=2012-04-20|url-status=dead}}
  • {{Citation | last1=Kazhdan | first1=David | last2=Lusztig | first2=George | title=Fixed point varieties on affine flag manifolds | doi=10.1007/BF02787119 | doi-access=free | mr=947819 | year=1988 | journal=Israel Journal of Mathematics | issn=0021-2172 | volume=62 | issue=2 | pages=129–168}}
  • {{Citation | last1=Kottwitz | first1=Robert E. | authorlink1=Robert Kottwitz | editor1-last=Langlands | editor1-first=Robert P. | editor2-last=Ramakrishnan | editor2-first=Dinakar | title=The zeta functions of Picard modular surfaces | publisher=Univ. Montréal | location=Montreal, QC | isbn=978-2-921120-08-1 | mr=1155233 | year=1992 | chapter=Calculation of some orbital integrals | pages=349–362}}
  • {{Citation | last1=Labesse | first1=Jean-Pierre | last2=Langlands | first2=R. P. | title=L-indistinguishability for SL(2) | doi=10.4153/CJM-1979-070-3 | mr=540902 | year=1979 | journal=Canadian Journal of Mathematics | issn=0008-414X | volume=31 | issue=4 | pages=726–785| s2cid=17447242 | doi-access=free }}
  • {{Citation | last1=Langlands | first1=Robert P. | title=Les débuts d'une formule des traces stable | url=http://www.sunsite.ubc.ca/DigitalMathArchive/Langlands/endoscopy.html#debuts | publisher=Université de Paris VII U.E.R. de Mathématiques | location=Paris | series=Publications Mathématiques de l'Université Paris VII [Mathematical Publications of the University of Paris VII] | mr=697567 | year=1983 | volume=13}}
  • {{Citation | last1=Langlands | first1=Robert P. | last2=Shelstad | first2=Diana | title=On the definition of transfer factors | doi=10.1007/BF01458070 | mr=909227 | year=1987 | journal=Mathematische Annalen | issn=0025-5831 | volume=278 | issue=1 | pages=219–271| s2cid=14141632 }}
  • {{Citation | last1=Laumon | first1=Gérard | title=International Congress of Mathematicians. Vol. II | url=http://mathunion.org/ICM/ICM2006.2/ | publisher=Eur. Math. Soc., Zürich | mr=2275603 | year=2006 | chapter=Aspects géométriques du Lemme Fondamental de Langlands-Shelstad | pages=401–419 | access-date=2012-01-09 | archive-url=https://web.archive.org/web/20120315001421/http://mathunion.org/ICM/ICM2006.2/ | archive-date=2012-03-15 | url-status=dead }}
  • {{Citation | last1=Laumon | first1=Gérard | last2=Ngô | first2=Bao Châu | title=Le lemme fondamental pour les groupes unitaires | doi=10.4007/annals.2008.168.477 | mr=2434884 | year=2008 | journal=Annals of Mathematics |series=Second Series | issn=0003-486X | volume=168 | issue=2 | pages=477–573| arxiv=math/0404454 | s2cid=119606388 }}
  • {{Citation | last1=Nadler | first1=David | title=The geometric nature of the fundamental lemma | doi=10.1090/S0273-0979-2011-01342-8 | year=2012 | journal=Bulletin of the American Mathematical Society | issn=0002-9904 | volume=49 | pages= 1–50 | arxiv=1009.1862 | s2cid=30785271 }}
  • {{Citation | last1=Ngô | first1=Bao Châu | title=Fibration de Hitchin et endoscopie | doi=10.1007/s00222-005-0483-7 | mr=2218781 | year=2006 | journal=Inventiones Mathematicae | issn=0020-9910 | volume=164 | issue=2 | pages=399–453| bibcode=2006InMat.164..399N | arxiv=math/0406599 | s2cid=52064585 }}
  • {{Citation | last1=Ngô | first1=Bao Châu | title=Le lemme fondamental pour les algèbres de Lie | doi=10.1007/s10240-010-0026-7 | doi-access=free | mr=2653248 | year=2010 | journal=Publications Mathématiques de l'Institut des Hautes Études Scientifiques | issn=0073-8301 | volume=111 | pages=1–169| arxiv=0801.0446 }}
  • {{Citation | last1=Shelstad | first1=Diana | title=L-indistinguishability for real groups | doi=10.1007/BF01456950 | mr=661206 | year=1982 | journal=Mathematische Annalen | issn=0025-5831 | volume=259 | issue=3 | pages=385–430| s2cid=121385109 }}
  • {{Citation | last1=Waldspurger | first1=Jean-Loup | title=Sur les intégrales orbitales tordues pour les groupes linéaires: un lemme fondamental | doi=10.4153/CJM-1991-049-5 | mr=1127034 | year=1991 | journal=Canadian Journal of Mathematics | issn=0008-414X | volume=43 | issue=4 | pages=852–896| doi-access=free }}
  • {{Citation | last1=Waldspurger | first1=Jean-Loup | title=Endoscopie et changement de caractéristique | doi=10.1017/S1474748006000041 | mr=2241929 | year=2006 | journal=Journal of the Institute of Mathematics of Jussieu | issn=1474-7480 | volume=5 | issue=3 | pages=423–525| doi-broken-date=9 January 2025 | s2cid=122919302 }}
  • {{Citation | last1=Waldspurger | first1=Jean-Loup | title=L'endoscopie tordue n'est pas si tordue | url=http://www.math.jussieu.fr/~waldspur/endoscopietordue.pdf | publisher=American Mathematical Society | location=Providence, R.I. | isbn=978-0-8218-4469-4 | mr=2418405 | year=2008 | journal=Memoirs of the American Mathematical Society | issn=0065-9266 | volume=194 | issue=908 | pages=261 | doi=10.1090/memo/0908 | trans-title=Twisted endoscopy is not so twisted | language=fr}}
  • {{Citation | last1=Weissauer | first1=Rainer | title=Endoscopy for GSP(4) and the Cohomology of Siegel Modular Threefolds | publisher=Springer-Verlag | location=Berlin, New York | series=Lecture Notes in Mathematics | isbn=978-3-540-89305-9 | doi=10.1007/978-3-540-89306-6 | mr=2498783 | year=2009 | volume=1968}}