general hypergeometric function

{{short description|Hypergeometric function in mathematics}}

{{distinguish|generalized hypergeometric function}}

In mathematics, a general hypergeometric function or Aomoto–Gelfand hypergeometric function is a generalization of the hypergeometric function that was introduced by {{harvtxt|Gelfand|1986}}. The general hypergeometric function is a function that is (more or less) defined on a Grassmannian, and depends on a choice of some complex numbers and signs.

References

  • {{Citation | last1=Gelfand | first1=I. M. | authorlink=Israel Gelfand | title=General theory of hypergeometric functions | mr=841131 | year=1986 | journal=Doklady Akademii Nauk SSSR | issn=0002-3264 | volume=288 | issue=1 | pages=14–18}} (English translation in collected papers, volume III.)
  • Aomoto, K. (1975), "Les équations aux différences linéaires et les intégrales des fonctions multiformes", J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 22, 271-229.

Category:Hypergeometric functions