generalized integer gamma distribution
{{third-party|date=February 2012}}
In probability and statistics, the generalized integer gamma distribution (GIG) is the distribution of the sum of independent
gamma distributed random variables, all with integer shape parameters and different rate parameters. This is a special case of the generalized chi-squared distribution. A related concept is the generalized near-integer gamma distribution (GNIG).
Definition
The random variable has a gamma distribution with shape parameter and rate parameter if its probability density function is
:
f^{}_X(x)=\frac{\lambda^r}{\Gamma(r)}\,e^{-\lambda x} x^{r-1}~~~~~~(x>0;\,\lambda,r>0)
and this fact is denoted by
Let , where be independent random variables, with all being positive integers and all different. In other words, each variable has the Erlang distribution with different shape parameters. The uniqueness of each shape parameter comes without loss of generality, because any case where some of the are equal would be treated by first adding the corresponding variables: this sum would have a gamma distribution with the same rate parameter and a shape parameter which is equal to the sum of the shape parameters in the original distributions.
Then the random variable Y defined by
:
Y=\sum^p_{j=1} X_j
has a GIG (generalized integer gamma) distribution of depth with shape parameters and rate parameters . This fact is denoted by
:
It is also a special case of the generalized chi-squared distribution.
=Properties=
The probability density function and the cumulative distribution function of Y are respectively given byAmari S.V. and Misra R.B. (1997). [http://www.dei.unipd.it/~tomasin/RelatedWork/sum-exp-rvs.pdf Closed-From Expressions for Distribution of Sum of Exponential Random Variables]{{Dead link|date=December 2019 |bot=InternetArchiveBot |fix-attempted=yes }}. IEEE Transactions on Reliability, vol. 46, no. 4, 519-522. Coelho, C. A. (1998). [http://www.sciencedirect.com/science/article/B6WK9-45J4Y1R-19/2/b439ff01637b5e9d2c682459a5b9c135 The Generalized Integer Gamma distribution – a basis for distributions in Multivariate Statistics]. Journal of Multivariate Analysis, 64, 86-102. Coelho, C. A. (1999). [http://www.sciencedirect.com/science/article/pii/S0047259X9891805X Addendum to the paper ’The Generalized IntegerGamma distribution - a basis for distributions in MultivariateAnalysis’]. Journal of Multivariate Analysis, 69, 281-285.
:
f_Y^{\text{GIG}}(y|r_1,\dots,r_p;\lambda_1,\dots,\lambda_p)\,=\,K\sum^p_{j=1}P_j(y)\,e^{-\lambda_j\,y}\,,~~~~(y>0)
and
:
F_Y^{\text{GIG}}(y|r_1,\dots,r_p;\lambda_1,\dots,\lambda_p)\,=\,1-K\sum^p_{j=1}P^*_j(y)\,e^{-\lambda_j\,y}\,,~~~~(y>0)
where
:
K=\prod^p_{j=1}\lambda_j^{r_j}~,~~~~~P_j(y)=\sum^{r_j}_{k=1} c_{j,k}\,y^{k-1}
and
:
P^*_j(y)=\sum^{r_j}_{k=1}c_{j,k}\,(k-1)!\sum^{k-1}_{i=0}\frac{y^i}{i!\,\lambda_j^{k-i}}
with
{{NumBlk|:|
c_{j,r_j}
=\frac{1}{(r_j-1)!}\,\mathop{\prod^p_{i=1}}_{i\neq j}(\lambda_i-\lambda_j)^{-r_i}~,~~~~~~
j=1,\ldots,p\,,
|{{EquationRef|1}}}}
and
{{NumBlk|:|
c_{j,r_j-k}=\frac{1}{k}\sum^k_{i=1}\frac{(r_j-k+i-1)!}{(r_j-k-1)!}\,R(i,j,p)\,c_{j,r_j-(k-i)}\,,
~~~~~~ (k=1,\ldots,r_j-1;\,j=1,\ldots,p)
|{{EquationRef|2}}}}
where
{{NumBlk|:|
R(i,j,p)=\mathop{\sum^p_{k=1}}_{k\neq j}r_k\left(\lambda_j-\lambda_k\right)^{-i}~~~(i=1,\ldots,r_j-1)\,.
|{{EquationRef|3}}}}
Alternative expressions are available in the literature on generalized chi-squared distribution, which is a field where computer algorithms have been available for some years.{{when|date=November 2023}}
Generalization
The GNIG (generalized near-integer gamma) distribution of depth is the distribution of the random variableCoelho, C. A. (2004). [http://www.sciencedirect.com/science/article/pii/S0047259X03002112 "The Generalized Near-Integer Gamma distribution – a basis for ’near-exact’ approximations to the distributions of statistics which are the product of an odd number of particular independent Beta random variables"]. Journal of Multivariate Analysis, 89 (2), 191-218. {{MR|2063631}} {{Zbl|1047.62014}} [WOS: 000221483200001]
:
where and are two independent random variables, where is a positive non-integer real and where .
=Properties=
The probability density function of is given by
:
\begin{array}{l}
\displaystyle
f_Z^{\text{GNIG}} (z|r_1,\dots,r_p,r;\,\lambda_1,\dots,\lambda_p,\lambda) = \\[5pt]
\displaystyle \quad\quad\quad
K\lambda ^r \sum\limits_{j = 1}^p {e^{ - \lambda _j z} } \sum\limits_{k = 1}^{r_j } {\left\{ {c_{j,k} \frac{{\Gamma (k)}}{{\Gamma (k+r)}}z^{k + r - 1} {}_1F_1 (r,k+r, - (\lambda-\lambda _j )z)} \right\}} {\rm , } ~~~~(z > 0)
\end{array}
and the cumulative distribution function is given by
:
\begin{array}{l}
\displaystyle
F_Z^{\text{GNIG}} (z|r_1,\ldots,r_p,r;\,\lambda_1,\ldots,\lambda_p,\lambda) = \frac{\lambda ^r \,{z^r }}{{\Gamma (r+1)}}{}_1F_1 (r,r+1, - \lambda z)\\[12pt]
\quad\quad \displaystyle - K\lambda ^r \sum\limits_{j = 1}^p {e^{ - \lambda _j z} } \sum\limits_{k = 1}^{r_j } {c_{j,k}^* } \sum\limits_{i = 0}^{k - 1} {\frac{{z^{r + i} \lambda _j^i }}{{\Gamma (r+1+i)}}} {}_1F_1 (r,r+1+i, - (\lambda - \lambda _j )z) ~~~~ (z>0)
\end{array}
where
:
c_{j,k}^* = \frac{{c_{j,k} }}{{\lambda _j^k }}\Gamma (k)
with given by ({{EquationNote|1}})-({{EquationNote|3}}) above. In the above expressions is the Kummer confluent hypergeometric function. This function has usually very good convergence properties and is nowadays easily handled by a number of software packages.
Applications
The GIG and GNIG distributions are the basis for the exact and near-exact distributions of a large number of likelihood ratio test statistics and related statistics used in multivariate analysis. Bilodeau, M., Brenner, D. (1999) [https://books.google.com/books?id=1pa0VpPC8gsC "Theory of Multivariate Statistics"]. Springer, New York [Ch. 11, sec. 11.4]Das, S., Dey, D. K. (2010) [http://www.sciencedirect.com/science/article/pii/S0167715210001616 "On Bayesian inference for generalized multivariate gamma distribution"]. Statistics and Probability Letters, 80, 1492-1499.Karagiannidis, K., Sagias, N. C., Tsiftsis, T. A. (2006) [https://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1673666&tag=1 "Closed-form statistics for the sum of squared Nakagami-m variates and its applications"]. Transactions on Communications, 54, 1353-1359.Paolella, M. S. (2007) [https://books.google.com/books?id=9SHARfvyiR4C&dq=Intermediate+Probability+-+A+Computational+Approach&pg=PP2 "Intermediate Probability - A Computational Approach"]. J. Wiley & Sons, New York [Ch. 2, sec. 2.2]Timm, N. H. (2002) [https://books.google.com/books?id=vtiyg6fnnskC "Applied Multivariate Analysis"]. Springer, New York [Ch. 3, sec. 3.5] More precisely, this application is usually for the exact and near-exact distributions of the negative logarithm of such statistics. If necessary, it is then easy, through a simple transformation, to obtain the corresponding exact or near-exact distributions for the corresponding likelihood ratio test statistics themselves. Coelho, C. A. (2006) [https://www.ams.org/mathscinet/search/publdoc.html?arg3=&co4=AND&co5=AND&co6=AND&co7=AND&dr=all&pg4=AUCN&pg5=TI&pg6=PC&pg7=ALLF&pg8=ET&review_format=html&s4=Coelho%2C%20Carlos%20A%2A&s5=&s6=&s7=&s8=All&vfpref=html&yearRangeFirst=&yearRangeSecond=&yrop=eq&r=12&mx-pid=2351709 "The exact and near-exact distributions of the product of independent Beta random variables whose second parameter is rational"]. Journal of Combinatorics, Information & System Sciences, 31 (1-4), 21-44. {{MR|2351709}}Coelho, C. A., Alberto, R. P. and Grilo, L. M. (2006) [https://www.ams.org/mathscinet/search/publdoc.html?arg3=&co4=AND&co5=AND&co6=AND&co7=AND&dr=all&pg4=AUCN&pg5=TI&pg6=PC&pg7=ALLF&pg8=ET&review_format=html&s4=Coelho%2C%20Carlos%20A%2A&s5=&s6=&s7=&s8=All&vfpref=html&yearRangeFirst=&yearRangeSecond=&yrop=eq&r=12&mx-pid=2351709 "A mixture of Generalized Integer Gamma distributions as the exact distribution of the product of an odd number of independent Beta random variables.Applications"]. Journal of Interdisciplinary Mathematics, 9, 2, 229-248. {{MR|2245158}} {{Zbl|1117.62017}}
The GIG distribution is also the basis for a number of wrapped distributions in the wrapped gamma family.
As being a special case of the generalized chi-squared distribution, there are many other applications; for example, in renewal theory and in multi-antenna wireless communications.E. Björnson, D. Hammarwall, B. Ottersten (2009) [http://www.ee.kth.se/php/modules/publications/reports/2009/IR-EE-SB_2009_010.pdf "Exploiting Quantized Channel Norm Feedback through Conditional Statistics in Arbitrarily Correlated MIMO Systems"], IEEE Transactions on Signal Processing, 57, 4027-4041Kaiser, T., Zheng, F. (2010) [https://books.google.com/books?id=D15M_FLNPGwC&dq=Kaiser+Ultra+Wideband+Systems+With+MIMO&pg=PA247 "Ultra Wideband Systems with MIMO"]. J. Wiley & Sons, Chichester, U.K. [Ch. 6, sec. 6.6]Suraweera, H. A., Smith, P. J., Surobhi, N. A. (2008) [https://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4531868&tag=1 "Exact outage probability of cooperative diversity with opportunistic spectrum access"]. IEEE International Conference on Communications, 2008, ICC Workshops '08, 79-86 ({{ISBN|978-1-4244-2052-0}} - {{doi|10.1109/ICCW.2008.20)}}.Surobhi, N. A. (2010) [http://vuir.vu.edu.au/15509/1/nusrat2009.pdf "Outage performance of cooperative cognitive relay networks"]. MsC Thesis, School of Engineering and Science, Victoria University, Melbourne, Australia [Ch. 3, sec. 3.4].