genetically encoded voltage indicator

{{Short description|Protein}}

Genetically encoded voltage indicator (or GEVI) is a protein that can sense membrane potential in a cell and relate the change in voltage to a form of output, often fluorescent level.{{Cite web|url=https://www.openoptogenetics.org/index.php?title=Genetically-Encoded_Voltage_Indicators|title=Genetically-Encoded Voltage Indicators|website=Openoptogenetics.org|access-date=8 May 2017}} It is a promising optogenetic recording tool that enables exporting electrophysiological signals from cultured cells, live animals, and ultimately human brain. Examples of notable GEVIs include ArcLight,{{cite journal |last1=Jin |first1=L |last2=Han |first2=Z |last3=Platisa |first3=J |last4=Wooltorton |first4=JR |last5=Cohen |first5=LB |last6=Pieribone |first6=VA |title=Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. |journal=Neuron |date=6 September 2012 |volume=75 |issue=5 |pages=779–85 |doi=10.1016/j.neuron.2012.06.040 |pmid=22958819|doi-access=free |pmc=3439164 }} ASAP1,{{Cite journal|display-authors=3|vauthors=St-Pierre F, Marshall JD, Yang Y, Gong Y, Schnitzer MJ, Lin MZ|date=2014|title=High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor|journal=Nat. Neurosci.|volume=17|issue=6|pages=884–889|doi=10.1038/nn.3709|pmc=4494739|pmid=24755780}} ASAP3,{{cite journal |last1=Villette |first1=V |last2=Chavarha |first2=M |last3=Dimov |first3=IK |last4=Bradley |first4=J |last5=Pradhan |first5=L |last6=Mathieu |first6=B |last7=Evans |first7=SW |last8=Chamberland |first8=S |last9=Shi |first9=D |last10=Yang |first10=R |last11=Kim |first11=BB |last12=Ayon |first12=A |last13=Jalil |first13=A |last14=St-Pierre |first14=F |last15=Schnitzer |first15=MJ |last16=Bi |first16=G |last17=Toth |first17=K |last18=Ding |first18=J |last19=Dieudonné |first19=S |last20=Lin |first20=MZ |title=Ultrafast Two-Photon Imaging of a High-Gain Voltage Indicator in Awake Behaving Mice. |journal=Cell |date=12 December 2019 |volume=179 |issue=7 |pages=1590–1608.e23 |doi=10.1016/j.cell.2019.11.004 |pmid=31835034 |pmc=6941988}} Archons,{{cite journal |last1=Piatkevich |first1=Kiryl D. |last2=Jung |first2=Erica E. |last3=Straub |first3=Christoph |last4=Linghu |first4=Changyang |last5=Park |first5=Demian |last6=Suk |first6=Ho-Jun |last7=Hochbaum |first7=Daniel R. |last8=Goodwin |first8=Daniel |last9=Pnevmatikakis |first9=Eftychios |last10=Pak |first10=Nikita |last11=Kawashima |first11=Takashi |last12=Yang |first12=Chao-Tsung |last13=Rhoades |first13=Jeffrey L. |last14=Shemesh |first14=Or |last15=Asano |first15=Shoh |last16=Yoon |first16=Young-Gyu |last17=Freifeld |first17=Limor |last18=Saulnier |first18=Jessica L. |last19=Riegler |first19=Clemens |last20=Engert |first20=Florian |last21=Hughes |first21=Thom |last22=Drobizhev |first22=Mikhail |last23=Szabo |first23=Balint |last24=Ahrens |first24=Misha B. |last25=Flavell |first25=Steven W. |last26=Sabatini |first26=Bernardo L. |last27=Boyden |first27=Edward S. |title=A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters |journal=Nature Chemical Biology |date=April 2018 |volume=14 |issue=4 |pages=352–360 |doi=10.1038/s41589-018-0004-9 |pmid=29483642 |url= |language=en |issn=1552-4469|pmc=5866759 }} SomArchon,{{cite journal |last1=Piatkevich |first1=Kiryl D. |last2=Bensussen |first2=Seth |last3=Tseng |first3=Hua-an |last4=Shroff |first4=Sanaya N. |last5=Lopez-Huerta |first5=Violeta Gisselle |last6=Park |first6=Demian |last7=Jung |first7=Erica E. |last8=Shemesh |first8=Or A. |last9=Straub |first9=Christoph |last10=Gritton |first10=Howard J. |last11=Romano |first11=Michael F. |last12=Costa |first12=Emma |last13=Sabatini |first13=Bernardo L. |last14=Fu |first14=Zhanyan |last15=Boyden |first15=Edward S. |last16=Han |first16=Xue |title=Population imaging of neural activity in awake behaving mice |journal=Nature |date=October 2019 |volume=574 |issue=7778 |pages=413–417 |doi=10.1038/s41586-019-1641-1 |pmid=31597963 |url= |language=en |issn=1476-4687|pmc=6858559 |bibcode=2019Natur.574..413P }} and Ace2N-mNeon.{{cite journal |last1=Gong |first1=Y |last2=Huang |first2=C |last3=Li |first3=JZ |last4=Grewe |first4=BF |last5=Zhang |first5=Y |last6=Eismann |first6=S |last7=Schnitzer |first7=MJ |title=High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. |journal=Science |date=11 December 2015 |volume=350 |issue=6266 |pages=1361–6 |doi=10.1126/science.aab0810 |pmid=26586188|doi-access=free |pmc=4904846 |bibcode=2015Sci...350.1361G }}

History

Even though the idea of optical measurement of neuronal activity was proposed in the late 1960s,{{Cite journal|vauthors=Cohen LB, Keynes RD, Hille B|date=1968|title=Light scattering and birefringence changes during nerve activity|journal=Nature|volume=218|issue=5140|pages=438–441|doi=10.1038/218438a0|pmid=5649693|bibcode=1968Natur.218..438C |s2cid=4288546}} the first successful GEVI that was convenient enough to put into actual use was not developed until technologies of genetic engineering had become mature in the late 1990s. The first GEVI, coined FlaSh,{{Cite journal|vauthors=Siegel MS, Isacoff EY|date=1997|title=A genetically encoded optical probe of membrane voltage|journal=Neuron|volume=19|issue=4|pages=735–741|doi=10.1016/S0896-6273(00)80955-1|pmid=9354320|doi-access=free}} was constructed by fusing a modified green fluorescent protein with a voltage-sensitive K+ channel (Shaker). Unlike fluorescent proteins, the discovery of new GEVIs are seldom inspired by nature, for it is hard to find an organism which naturally has the ability to change its fluorescence based on voltage. Therefore, new GEVIs are mostly the products of genetic and protein engineering.

Two methods can be utilized to find novel GEVIs: rational design and directed evolution. The former method contributes to the most of new GEVI variants, but recent research using directed evolution have shown promising results in GEVI optimization.{{Cite journal|display-authors=3|vauthors=Platisa J, Vasan G, Yang A, Pieribone VA|date=2017|title=Directed Evolution of Key Residues in Fluorescent Protein Inverses the Polarity of Voltage Sensitivity in the Genetically Encoded Indicator ArcLight|journal=ACS Chem. Neurosci.|volume=8|issue=3|pages=513–523|doi=10.1021/acschemneuro.6b00234|pmc=5355904|pmid=28045247}}

Structure

Conceptually, a GEVI should sense the voltage difference across the cell membrane and report it by a change in fluorescence. Many different structures can be used for the voltage sensing function,{{Cite journal|vauthors=Gong Y|date=2015|title=The evolving capabilities of rhodopsin-based genetically encoded voltage indicators|journal=Curr. Opin. Chem. Biol.|volume=27|pages=84–89|doi=10.1016/j.cbpa.2015.05.006|pmc=4571180|pmid=26143170}} but one essential feature is that it must be imbedded in the cell membrane. Usually, the voltage-sensing domain (VSD) of a GEVI spans across the membrane, and is connected to the fluorescent protein (FP). However, it is not necessary that sensing and reporting must happen in different structures - see, for example, the Archons.

By structure, GEVIs can be classified into four categories based on the current findings: (1) GEVIs contain a fluorescent protein FRET pair, e.g. VSFP1, (2) Single opsin GEVIs, e.g. Arch, (3) Opsin-FP FRET pair GEVIs, e.g. MacQ-mCitrine, (4) single FP with special types of voltage sensing domains, e.g. ASAP1. A majority of GEVIs are based on the Ciona intestinalis voltage sensitive phosphatase (Ci-VSP or Ci-VSD (domain)), which was discovered in 2005 from the genomic survey of the organism.{{Cite journal|display-authors=3|vauthors=Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y|date=2005|title=Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor|journal=Nature|volume=435|issue=7046|pages=1239–1243|doi=10.1038/nature03650|pmid=15902207|bibcode=2005Natur.435.1239M |s2cid=4427755}} Some GEVIs may have similar components, but in different positions. For example, ASAP1 and ArcLight both use a VSD and one FP, but the FP of ASAP1 is on the outside of the cell whereas that of ArcLight is on the inside, and the two FPs of VSFP-Butterfly are separated by the VSD, while the two FPs of Mermaid are relatively close to each other.

class="wikitable sortable mw-collapsible"

|+Table of GEVIs and their structure

!GEVI{{ref label|name|A|↑}}

!Year

!Sensing

!Reporting

!Precursor

FlaSh

|1997

|Shaker (K+ channel)

|GFP

| -

VSFP1{{Cite journal|display-authors=3|vauthors=Sakai R, Repunte-Canonigo V, Raj CD, Knöpfel T|date=2001|title=Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein|journal=Eur. J. Neurosci.|volume=13|issue=12|pages=2314–2318|doi=10.1046/j.0953-816x.2001.01617.x|pmid=11454036|s2cid=10969720}}

|2001

|Rat Kv2.1 (K+ channel)

|FRET pair: CFP and YFP

| -

SPARC{{Cite journal|vauthors=Ataka K, Pieribone VA|date=2002|title=A genetically targetable fluorescent probe of channel gating with rapid kinetics|journal=Biophys. J.|volume=82|issue=1 Pt 1|pages=509–516|doi=10.1016/S0006-3495(02)75415-5|pmc=1302490|pmid=11751337|bibcode=2002BpJ....82..509A }}

|2002

|Rat Na+ channel

|GFP

| -

VSFP2's{{Cite journal|display-authors=3|vauthors=Dimitrov D, He Y, Mutoh H, Baker BJ, Cohen L, Akemann W, Knöpfel T|date=2007|title=Engineering and characterization of an enhanced fluorescent protein voltage sensor|journal=PLoS One|volume=2|issue=5|pages=e440|doi=10.1371/journal.pone.0000440|pmc=1857823|pmid=17487283|bibcode=2007PLoSO...2..440D |doi-access=free}}

|2007

|Ci-VSD

|FRET pair: CFP (Cerulean) and YFP (Citrine)

|VSFP1

Flare{{Cite journal|display-authors=3|vauthors=Baker BJ, Lee H, Pieribone VA, Cohen LB, Isacoff EY, Knopfel T, Kosmidis EK|date=2007|title=Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells|journal=J. Neurosci. Methods|volume=161|issue=1|pages=32–38|doi=10.1016/j.jneumeth.2006.10.005|pmid=17126911|s2cid=8540453}}

|2007

|Kv1.4 (K+ channel)

|YFP

|FlaSh

VSFP3.1{{Cite journal|display-authors=3|vauthors=Lundby A, Mutoh H, Dimitrov D, Akemann W, Knöpfel T|date=2008|title=Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements|journal=PLoS One|volume=3|issue=6|pages=e2514|doi=10.1371/journal.pone.0002514|pmc=2429971|pmid=18575613|bibcode=2008PLoSO...3.2514L |doi-access=free}}

|2008

|Ci-VSD

|CFP

|VSFP2's

Mermaid{{Cite journal|display-authors=3|vauthors=Tsutsui H, Karasawa S, Okamura Y, Miyawaki A|date=2008|title=Improving membrane voltage measurements using FRET with new fluorescent proteins|journal=Nat. Methods|volume=5|issue=8|pages=683–685|doi=10.1038/nmeth.1235|pmid=18622396|s2cid=30661869}}

|2008

|Ci-VSD

|FRET pair: Marine GFP (mUKG) and OFP (mKOκ)

|VSFP2's

hVOS{{Cite journal|vauthors=Sjulson L, Miesenböck G|date=2008|title=Rational optimization and imaging in vivo of a genetically encoded optical voltage reporter|journal=J. Neurosci.|volume=28|issue=21|pages=5582–5593|doi=10.1523/JNEUROSCI.0055-08.2008|pmc=2714581|pmid=18495892}}

|2008

|Dipicrylamine

|GFP

| -

Red-shifted VSFP's{{Cite journal|display-authors=3|vauthors=Perron A, Mutoh H, Launey T, Knöpfel T|date=2009|title=Red-shifted voltage-sensitive fluorescent proteins|journal=Chem. Biol.|volume=16|issue=12|pages=1268–1277|doi=10.1016/j.chembiol.2009.11.014|pmc=2818747|pmid=20064437}}

|2009

|Ci-VSD

|RFP/YFP (Citrine, mOrange2, TagRFP, or mKate2)

|VSFP3.1

PROPS{{Cite journal|display-authors=3|vauthors=Kralj JM, Hochbaum DR, Douglass AD, Cohen AE|date=2011|title=Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein|journal=Science|volume=333|issue=6040|pages=345–348|doi=10.1126/science.1204763|pmid=21764748|bibcode=2011Sci...333..345K |s2cid=2195943}}

|2011

|Modified green-absorbing proteorhodopsin (GPR)

|Same as left

| -

Zahra, Zahra 2{{Cite journal|display-authors=3|vauthors=Baker BJ, Jin L, Han Z, Cohen LB, Popovic M, Platisa J, Pieribone V|date=2012|title=Genetically encoded fluorescent voltage sensors using the voltage-sensing domain of Nematostella and Danio phosphatases exhibit fast kinetics|journal=J. Neurosci. Methods|volume=208|issue=2|pages=190–196|doi=10.1016/j.jneumeth.2012.05.016|pmc=3398169|pmid=22634212}}

|2012

|Nv-VSD, Dr-VSD

|FRET pair: CFP (Cerulean) and YFP (Citrine)

|VSFP2's

ArcLight{{Cite journal|display-authors=3|vauthors=Jin L, Han Z, Platisa J, Wooltorton JR, Cohen LB, Pieribone VA|date=2012|title=Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe|journal=Neuron|volume=75|issue=5|pages=779–785|doi=10.1016/j.neuron.2012.06.040|pmc=3439164|pmid=22958819}}

|2012

|Ci-VSD

|Modified super ecliptic pHluorin

| -

Arch{{Cite journal|display-authors=3|vauthors=Kralj JM, Douglass AD, Hochbaum DR, Maclaurin D, Cohen AE|date=2011|title=Optical recording of action potentials in mammalian neurons using a microbial rhodopsin|journal=Nat. Methods|volume=9|issue=1|pages=90–95|doi=10.1038/nmeth.1782|pmc=3248630|pmid=22120467}}

|2012

|Archaerhodopsin 3

|Same as left

| -

ElectricPk{{Cite journal|display-authors=3|vauthors=Barnett L, Platisa J, Popovic M, Pieribone VA, Hughes T|date=2012|title=A fluorescent, genetically-encoded voltage probe capable of resolving action potentials|journal=PLoS One|volume=7|issue=9|pages=e43454|doi=10.1371/journal.pone.0043454|pmc=3435330|pmid=22970127|bibcode=2012PLoSO...743454B |doi-access=free}}

|2012

|Ci-VSD

|Circularly permuted EGFP

|VSFP3.1

VSFP-Butterfly{{Cite journal|display-authors=3|vauthors=Akemann W, Mutoh H, Perron A, Park YK, Iwamoto Y, Knöpfel T|date=2012|title=Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein|journal=J. Neurophysiol.|volume=108|issue=8|pages=2323–2337|doi=10.1152/jn.00452.2012|pmid=22815406}}

|2012

|Ci-VSD

|FRET pair: YFP (mCitrine) and RFP (mKate2)

|VSFP2's

VSFP-CR{{Cite journal|display-authors=3|vauthors=Lam AJ, St-Pierre F, Gong Y, Marshall JD, Cranfill PJ, Baird MA, McKeown MR, Wiedenmann J, Davidson MW, Schnitzer MJ, Tsien RY, Lin MZ|date=2013|title=Improving FRET Dynamic Range with Bright Green and Red Fluorescent Proteins|journal=Biophys. J.|volume=104|issue=2|pages=1005–1012|doi=10.1016/j.bpj.2012.11.3773|pmc=3461113|pmid=22961245|bibcode=2013BpJ...104..683L }}

|2013

|Ci-VSD

|FRET pair: GFP (Clover) and RFP(mRuby2)

|VSFP2.3

Mermaid2{{Cite journal|display-authors=3|vauthors=Tsutsui H, Jinno Y, Tomita A, Niino Y, Yamada Y, Mikoshiba K, Miyawaki A, Okamura Y|date=2013|title=Improved detection of electrical activity with a voltage probe based on a voltage-sensing phosphatase|journal=J. Physiol. (Lond.)|volume=591|issue=18|pages=4427–4437|doi=10.1113/jphysiol.2013.257048|pmc=3784191|pmid=23836686}}

|2013

|Ci-VSD

|FRET pair: CFP (seCFP2) and YFP

|Mermaid

Mac GEVIs{{Cite journal|display-authors=3|vauthors=Gong Y, Wagner MJ, Zhong Li J, Schnitzer MJ|date=2014|title=Imaging neural spiking in brain tissue using FRET-opsin protein voltage sensors|journal=Nat. Commun.|volume=5|pages=3674|doi=10.1038/ncomms4674|pmc=4247277|pmid=24755708|bibcode=2014NatCo...5.3674G }}

|2014

|Mac rhodopsin (FRET acceptor)

|FRET doner: mCitrine, or mOrange2

|-

QuasAr1, QuasAr2{{Cite journal|display-authors=3|vauthors=Hochbaum DR, Zhao Y, Farhi SL, Klapoetke N, Werley CA, Kapoor V, Zou P, Kralj JM, Maclaurin D, Smedemark-Margulies N, Saulnier JL, Boulting GL, Straub C, Cho YK, Melkonian M, Wong GK, Harrison DJ, Murthy VN, Sabatini BL, Boyden ES, Campbell RE, Cohen AE|date=2014|title=All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins|journal=Nat. Methods|volume=11|issue=8|pages=825–833|doi=10.1038/nmeth.3000|pmc=4117813|pmid=24952910}}

|2014

|Modified Archaerhodopsin 3

|Same as left

|Arch

Archer{{Cite journal|display-authors=3|vauthors=Flytzanis NC, Bedbrook CN, Chiu H, Engqvist MK, Xiao C, Chan KY, Sternberg PW, Arnold FH, Gradinaru V|date=2014|title=Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in mammalian and Caenorhabditis elegans neurons|journal=Nat. Commun.|volume=5|pages=4894|doi=10.1038/ncomms5894|pmc=4166526|pmid=25222271|bibcode=2014NatCo...5.4894F }}

|2014

|Modified Archaerhodopsin 3

|Same as left

|Arch

ASAP1

|2014

|Modified Gg-VSD

|Circularly permuted GFP

| -

Ace GEVIs{{Cite journal|display-authors=3|vauthors=Gong Y, Huang C, Li JZ, Grewe BF, Zhang Y, Eismann S, Schnitzer MJ|date=2015|title=High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor|journal=Science|volume=350|issue=6266|pages=1361–1366|doi=10.1126/science.aab0810|pmc=4904846|pmid=26586188|bibcode=2015Sci...350.1361G }}

|2015

|Modified Ace rhodopsin

|FRET doner: mNeonGreen

|Mac GEVIs

ArcLightning{{Cite journal|vauthors=Treger JS, Priest MF, Bezanilla F|date=2015|title=Single-molecule fluorimetry and gating currents inspire an improved optical voltage indicator|journal=eLife|volume=4|pages=e10482|doi=10.7554/eLife.10482|pmc=4658195|pmid=26599732 |doi-access=free }}

|2015

|Ci-VSD

|Modified super ecliptic pHluorin

|ArcLight

Pado{{Cite journal|vauthors=Kang BE, Baker BJ|date=2016|title=Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions|journal=Sci. Rep.|volume=6|pages=23865|doi=10.1038/srep23865|pmc=4878010|pmid=27040905|bibcode=2016NatSR...623865K }}

|2016

|Voltage-gated proton channel

|Super ecliptic pHluorin

| -

ASAP2f{{Cite journal|display-authors=3|vauthors=Yang HH, St-Pierre F, Sun X, Ding X, Lin MZ, Clandinin TR|date=2016|title=Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo|journal=Cell|volume=166|issue=1|pages=245–257|doi=10.1016/j.cell.2016.05.031|pmc=5606228|pmid=27264607}}

|2016

|Modified Gg-VSD

|Circularly permuted GFP

|ASAP1

FlicR1{{Cite journal|display-authors=3|vauthors=Abdelfattah AS, Farhi SL, Zhao Y, Brinks D, Zou P, Ruangkittisakul A, Platisa J, Pieribone VA, Ballanyi K, Cohen AE, Campbell RE|date=2016|title=A Bright and Fast Red Fluorescent Protein Voltage Indicator That Reports Neuronal Activity in Organotypic Brain Slices|journal=J. Neurosci.|volume=36|issue=8|pages=2458–2472|doi=10.1523/JNEUROSCI.3484-15.2016|pmc=4764664|pmid=26911693}}

|2016

|Ci-VSD

|Circularly permuted RFP (mApple)

|VSFP3.1

Bongwoori{{Cite journal|display-authors=3|vauthors=Lee S, Geiller T, Jung A, Nakajima R, Song YK, Baker BJ|date=2017|title=Improving a genetically encoded voltage indicator by modifying the cytoplasmic charge composition|journal=Sci. Rep.|volume=7|issue=1|pages=8286|doi=10.1038/s41598-017-08731-2|pmc=5557843|pmid=28811673|bibcode=2017NatSR...7.8286L }}

|2017

|Ci-VSD

|Modified super ecliptic pHluorin

|ArcLight

ASAP2s{{cite journal |last1=Chamberland |first1=S |last2=Yang |first2=HH |last3=Pan |first3=MM |last4=Evans |first4=SW |last5=Guan |first5=S |last6=Chavarha |first6=M |last7=Yang |first7=Y |last8=Salesse |first8=C |last9=Wu |first9=H |last10=Wu |first10=JC |last11=Clandinin |first11=TR |last12=Toth |first12=K |last13=Lin |first13=MZ |last14=St-Pierre |first14=F |title=Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators. |journal=eLife |date=27 July 2017 |volume=6 |doi=10.7554/eLife.25690 |pmid=28749338|doi-access=free |pmc=5584994 }}

|2017

|Modified Gg-VSD

|Circularly permuted GFP

|ASAP1

ASAP-Y{{Cite journal|vauthors=Lee EE, Bezanilla F|date=2017|title=Biophysical Characterization of Genetically Encoded Voltage Sensor ASAP1: Dynamic Range Improvement|journal=Biophys. J.|volume=113|issue=10|pages=2178–2181|doi=10.1016/j.bpj.2017.10.018|pmc=5700382|pmid=29108650|bibcode=2017BpJ...113.2178L }}

|2017

|Modified Gg-VSD

|Circularly permuted GFP

|ASAP1

(pa)QuasAr3(-s){{Cite journal|display-authors=3|vauthors=Adam Y, Kim JJ, Lou S, Zhao Y, Xie ME, Brinks D, Wu H, Mostajo-Radji MA, Kheifets S, Parot V, Chettih S, Williams KJ, Gmeiner B, Farhi SL, Madisen L, Buchanan EK, Kinsella I, Zhou D, Paninski L, Harvey CD, Zeng H, Arlotta P, Campbell RE, Cohen AE|date=2019|title=Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics|journal=Nature|volume=569|issue=7756|pages=413–417|doi=10.1038/s41586-019-1166-7|pmc=6613938|pmid=31043747|bibcode=2019Natur.569..413A }} "We fused paQuasAr3 with a trafficking motif from the soma-localized KV2.1 potassium channel, which led to largely soma-localized expression (Fig. 2a, b). We called this construct paQuasAr3-s.", "We called QuasAr3(V59A) 'photoactivated QuasAr3' (paQuasAr3).", and "QuasAr2(K171R)-TS-citrine-TS-TS-TS-ER2, which we call QuasAr3."

|2019

|Modified Archaerhodopsin 3

|Same as left

|QuasAr2

Voltron(-ST){{cite journal |title=Bright and photostable chemigenetic indicators for extended in vivo voltage imaging

|last1= Abdelfattah |first1= Ahmed S. |last2= Kawashima |first2= Takashi |last3= Singh |first3= Amrita

|last4= Novak |first4= Ondrej |last5= Liu |first5= Hui |last6= Shuai |first6= Yichun

|last7= Huang |first7= Yi-Chieh |last8= Campagnola |first8= Luke|last9= Seeman |first9= Stephanie C.

|last10= Yu |first10= Jianing|last11= Zheng |first11= Jihong|last12= Grimm |first12= Jonathan B.

|last13= Patel |first13= Ronak|last14= Friedrich |first14= Johannes|last15= Mensh |first15= Brett D.

|last16= Paninski |first16= Liam|last17= Macklin |first17= John J.|last18= Murphy |first18= Gabe J.

|last19= Podgorski |first19= Kaspar|last20= Lin |first20= Bei-Jung|last21= Chen |first21= Tsai-Wen

|last22= Turner |first22= Glenn C.|last23= Liu |first23= Zhe|last24= Koyama |first24= Minoru

|last25= Svoboda |first25= Karel|last26= Ahrens |first26= Misha B.|last27= Lavis |first27= Luke D.

|last28= Schreiter |first28= Eric R

|journal=Science

|volume=365

|number=6454

|pages=699--704

|year=2019

|publisher=American Association for the Advancement of Science}}

|2019

|Modified Ace rhodopsin (Ace2)

|FRET doner: Janelia Fluor (chemical)

| -

ASAP3

|2019

|Modified Gg-VSD

|Circularly permuted GFP

|ASAP2s

JEDI-2P{{Cite journal |last1=Liu |first1=Zhuohe |last2=Lu |first2=Xiaoyu |last3=Villette |first3=Vincent |last4=Gou |first4=Yueyang |last5=Colbert |first5=Kevin L. |last6=Lai |first6=Shujuan |last7=Guan |first7=Sihui |last8=Land |first8=Michelle A. |last9=Lee |first9=Jihwan |last10=Assefa |first10=Tensae |last11=Zollinger |first11=Daniel R. |last12=Korympidou |first12=Maria M. |last13=Vlasits |first13=Anna L. |last14=Pang |first14=Michelle M. |last15=Su |first15=Sharon |date=2022-08-18 |title=Sustained deep-tissue voltage recording using a fast indicator evolved for two-photon microscopy |journal=Cell |volume=185 |issue=18 |pages=3408–3425.e29 |language=English |doi=10.1016/j.cell.2022.07.013 |issn=0092-8674 |pmid=35985322|pmc=9563101 }}

|2022

|Modified Gg-VSD

|Circularly permuted GFP

|ASAP2s

ASAP4

|2023

|Modified Gg-VSD

|Circularly permuted GFP

|ASAP2s

ASAP5

|2024

|Modified Gg-VSD

|Circularly permuted GFP

|ASAP3

  1. {{note label|name|A|↑|Names in italic denote GEVIs not named. }}

Characteristics

A GEVI can be evaluated by its many characteristics. These traits can be classified into two categories: performance and compatibility. The performance properties include brightness, photostability, sensitivity, kinetics (speed), linearity of response, etc., while the compatibility properties cover toxicity (phototoxicity), plasma membrane localization, adaptability of deep-tissue imaging, etc.{{Cite journal|vauthors=Yang HH, St-Pierre F|date=2016|title=Genetically Encoded Voltage Indicators: Opportunities and Challenges|journal=J. Neurosci.|volume=36|issue=39|pages=9977–9989|doi=10.1523/JNEUROSCI.1095-16.2016|pmc=5039263|pmid=27683896}} For now, no existing GEVI meets all the desired properties, so searching for a perfect GEVI is still a quite competitive research area.

Applications, advantages, and disadvantages

Different types of GEVIs are being developed in many biological or physiological research areas. It is thought to be superior to conventional voltage detecting methods like electrode-based electrophysiological recordings, calcium imaging, or voltage sensitive dyes. It has subcellular spatial resolution{{Cite journal|vauthors=Kaschula R, Salecker I|date=2016|title=Neuronal Computations Made Visible with Subcellular Resolution|journal=Cell|volume=166|issue=1|pages=18–20|doi=10.1016/j.cell.2016.06.022|pmid=27368098|doi-access=free}} and temporal resolution as low as 0.2 milliseconds, about an order of magnitude faster than calcium imaging. This allows for spike detection fidelity comparable to electrode-based electrophysiology but without the invasiveness. Researchers have used it to probe neural communications of an intact brain (of Drosophila{{Cite journal|display-authors=3|vauthors=Cao G, Platisa J, Pieribone VA, Raccuglia D, Kunst M, Nitabach MN|date=2013|title=Genetically targeted optical electrophysiology in intact neural circuits|journal=Cell|volume=154|issue=4|pages=904–913|doi=10.1016/j.cell.2013.07.027|pmc=3874294|pmid=23932121}} or mouse{{Cite journal|vauthors=Knöpfel T, Gallero-Salas Y, Song C|date=2015|title=Genetically encoded voltage indicators for large scale cortical imaging come of age|journal=Curr. Opin. Chem. Biol.|volume=27|pages=75–83|doi=10.1016/j.cbpa.2015.06.006|pmid=26115448}}), electrical spiking of bacteria (E. coli), and human stem-cell derived cardiomyocyte.{{Cite journal|display-authors=3|vauthors=Kaestner L, Tian Q, Kaiser E, Xian W, Müller A, Oberhofer M, Ruppenthal S, Sinnecker D, Tsutsui H, Miyawaki A, Moretti A, Lipp P|date=2015|title=Genetically Encoded Voltage Indicators in Circulation Research|journal=Int. J. Mol. Sci.|volume=16|issue=9|pages=21626–21642|doi=10.3390/ijms160921626|pmc=4613271|pmid=26370981|doi-access=free}}{{Cite journal|last1=Zhang|first1=Joe Z.|last2=Termglinchan|first2=Vittavat|last3=Shao|first3=Ning-Yi|last4=Itzhaki|first4=Ilanit|last5=Liu|first5=Chun|last6=Ma|first6=Ning|last7=Tian|first7=Lei|last8=Wang|first8=Vicky Y.|last9=Chang|first9=Alex C. Y.|last10=Guo|first10=Hongchao|last11=Kitani|first11=Tomoya|date=2019-05-02|title=A Human iPSC Double-Reporter System Enables Purification of Cardiac Lineage Subpopulations with Distinct Function and Drug Response Profiles|journal=Cell Stem Cell|language=en|volume=24|issue=5|pages=802–811.e5|doi=10.1016/j.stem.2019.02.015|issn=1934-5909|pmid=30880024|pmc=6499654|doi-access=free}}

Conversely, any form of voltage indication has inherent limitations.{{cite journal |title=Voltage imaging: pitfalls and potential

|last1=Kulkarni |first1=Rishikesh U |last2=Miller |first2=Evan W

|journal=Biochemistry

|volume=56

|number=39

|pages=5171--5177

|year=2017

|url=https://pubs.acs.org/doi/pdf/10.1021/acs.biochem.7b00490

|publisher=ACS Publications}} Imaging must be fast, or short voltage excursions will be missed. This means fewer photons per image. Next, the brightness is inherently less, as about a thousand-fold fewer voltage indicators can fit in the membrane, when compared a cytosolic sensor such as used in calcium imaging. Finally, since the sensor is bound to the membrane (as opposed to the cytosol), it can be ambiguous which cell is responding.

References